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1. INTRODUCTION

This report briefly reviews the work performed under Army Research Office
contract No. DAAG29-83-C-0027 on the development of parametric techniques for

multichannel signal processing. The results are summarized in a number of
papers, which are enclosed as appendices A-M.

1.1 MULTICHANNEL SIGNAL PROCESSING

Most of the work in the area of signal processing (in particular adaptive
signal processing) is concerned with the single channel case: the design and
analysis of filters with a single input and a single output (SISO). This type
of processing is naturally suited to situations involving a scalar time series
such as the video signal in a radar system or the output of a communication
receiver. Many problems of great practical interest involve vector time
series such as the signals in an acoustic or seismic array. To perform
optimal prediction/estimation of such signals will usually require multi-input
multi-output (MIMQ) filters. Because of the higher complexity (both
conceptual and computational) of MIMO filters, they are often replaced by
suboptimal single channel processors.

In some recent work we developed a multichannel processor for the problem
of estimating the parameters (location and spectrum) of multiple targets from
multi-sensor data [10]. Preliminary simulation results indicated that
significant performance improvements are achievable by performing optimal
multichannel processing instead of the more conventional single channel
processing. These initial positive results motivated us to study further the
design and analysis of MIMO filters and their applications.

The advent of powerful VLSI processors makes it feasible to consider the

more complex MIMO signal processing archietectures. The theoretical framework
necessary for the development of multichannel processing techniques is

currently available; researchers in system theory and modern control have been
treating MIMO problems for the past two decades. We feel, therefore, that the

time is right for the development and application of optimal multichannel
signal processing techniques.




1.2 THE PARAMETRIC APPROACH

O Autoregressive moving-average {ARMA) models are widely used in the

n statistical analysis of time series. In signal processing, autoregressive

X (AR) techniques have been used for high resolution spectral estimation, linear
predictive coding, and (implicitly) in various adaptive filtering applications
{1]-[3]. The use of ARMA models and the related infinite impulse response
(IIR) prediction filters has been much more limited due to the difficulty of
reliably estimating the parameters of such models from noisy data. Practical
applications of these techniques have been limited to the single channel case.

#: In some recent work we applied (scalar) ARMA modeling technigues borrowed
i. from the area of system identification to signal processing problems such as
Pl adaptive line enhancement, adaptive noise cancelling, adaptive deconvolution,
e and spectral estimation [4]-[7]. We also developed a very robust non-adaptive
ljx ARMA parameter estimation technique which was used for high resolution

spectral estimation [11]. Other ARMA spectral estimation techniques were
reported in [8]-[9]. Based on the accumulated experience with AR and ARMA
signal processing techniques it seems that the single channel case is
reasonably well developed by now. (It should be noted, however, that many
questions are still open in the area of ARMA modeling for adaptive IIR
filtering.)

L&

The natural next step is to extend techniques for ARMA modeling to the
MIMO case and to use them for designing multichannel signal processors. The
main thrust of our research was, therefore, the development of robust
estimation techniques for MIMO ARMA parameters. Once these parameters are
estimated, they can be used to design MIMO filters for a variety of
applications, as was shown in [4]-[7] for the single channel case. The
problem of estimating MIMO ARMA parameters involves difficulties which were
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2. PROJECT PUBLICATIONS

The following is a list of publications summarizing the work performed on
this project. The key publications are included as appendices to this report.

In this project we developed a number of accurate ARMA estimation
techniques which can be used for single and multichannel problems. These
techniques require a modest amount of computation compared to a full-blown
maximum likelihood technique. We have also developed asymptotic performance
bounds that make it possible to evaluate the accuracy of these techniques.
The results of this work are summarized in more than 30 project publications
(see Section 2) and the key results are included in this report in appendices
A-M. These results have a wide range of applications in the area of
surveillance, communications, and statistical signal processing.

2.1 PUBLISHED JOURNAL PAPERS

1. B. Friedlander and B. Porat, "Some Bounds for the Estimation of

Autoregressive Signals in White NNoise," Signal Processing, No. 8, pp.
291-302, 1985.

2. P. Stoica, ¢ and B. Friedlander, "Optimal Instrumental

. Soderstrom
Variable Estimates of the AR Parameters of an ARMA Process," IEEE Trans.
Automatic Control, Vol. AC-30, No. 11, pp. 1065-1075, November 1985.

2.2 ACCEPTED FOR PUBLICATION IN JOURNALS

3. P. Stoica, B. Friedlander and T. Soderstrom , 'Least-Squares, Yule-Walker
and Overdetermined Yule-Walker Estimation of AR Parameters: A Monte Carlo
Study of Finite Sample Properties," Int. J. Control, to appear.

4, B. Porat and B. Friediander, "Computation of the Exact Information Matrix
for Gaussian Time Series with Stationary Random Components," IEEE Trans.
Acoustics, Speech and Signal Processing, to appear.

5. B. Friedlander and B. Porat, "Multichannel Spectral Analysis Using the
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10.

11.

12.

13.

14.

Modified Yule-Walker Equations," J. Signal Processing, Special Issue on

Spectral Estimation, to appear.
UNDER REVIEW

P. Stoica, B. Friedlander and T. Soderstrom , "Optimal Instrumental
Variable Multistep Algorithms for the Estimation of AR Parameters of an
ARMA Process."

P. Stoica, B. Friediander and T, SSderstrSm , "An Approximate Maximum
Likelihood Estimator of ARMA Parameters.”

P. Stoica, B. Friedlander and T. Soderstrom , "Maximum Likelihood
Estimation of the Parameters of Multiple Sinusoids in Noise."

B. Porat and B. Friedlander, "Adaptive Detection of Deterministic
Transient Signals."”

8. Porat and B. Friedlander, "Asymptotic Performance Analysis of ARMA
Parameter Estimation Methods Based on Sample Covariances," IEEE Trans.
Automatic Control.

B. Porat and B. Friedlander, "The Exact Cramer-Rao Bound for Gaussian
Autoregressive Procasses," IEEE Trans. Information Theory.

P. Stoica, B. Friedlander and T. Soderstrom , 'On Instrumental Variable
Estimation of Sinusoid Frequencies and the Parsimony Principle," IEEE
Trans. Acoustics, Speech and Signal Processing.

B. Friedlander, P. Stoica and T. Saderstram , "Instrumental Variable
Methods for ARMA Models," Chapter in Vol. XXIV of "Advances in Control and
Dynamic Systems."

B. Porat and B. Friedlander, "Parameter Estimation of Continuous-Time
Stationary Gaussian Processes with Rational Spectra," IEEE Trans.
Acoustics, Speech and Signal Processina.
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2.4 CONFERENCE PAPERS
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Y ON THE COMPUTATION OF AN ASYMPTOTIC BOUND FOR ESTIMATING
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R AUTOREGRESSIVE SIGNALS IN WHITE NOISE*
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{\-_1
s f.': Abstract. The Cramer-Rao lower bound 1CRLB) provides a usefui reference for evaluating the pertormance of parameter
¢sumation technmiques. This paper considers the problem ol estimating the parameters of an autoregressive signal corrupted
x_ by white naise. An expiicit formula is derived for computing the asymptotic CRLB for the signal and noise parameters.
_:.) e Formuias ior the asvmptotic CRLB for functions of the signal and noise parameters are aiso presented. ln particular, the
o - center 'requency, bandwidth and power of” a second order process are considered. Some numerical exampies are presented
[. 3 < to rilustrate the usefuiness of these bounds in studying estimation accuracy.
.i‘
b . -, Zusammenfassung. Die Cramer-Rao untere Grenze (CRLB) gibt eine niitziiche Referenz fiir die Performanz Evaluation von
: ﬂ Parameter Esumauonstechniken. Diese Kommunikation betrachtet das Problem der Estimation von Parametern eines
. Jutoregressiven Signais in weissem Rauchen. Eine explizite Formei wird angegeben fiir den asymptotischen CRLB von Signal
& und Rausch Parametern. Formein fir den CRLB von Funktionen der Signai und Rausch Parameter werden auch angegeben.
.7": . In spezieilen werden die Mittenfrequenz. Bandbreite und Leistung ¢ines Prozesses zweiter Ordnung angegeben. Numerische
) -:-, o Beispiete werden gegeben um die Niitzlichkeit dieser Grenzen zu zeigen wenn Estimationsgenauigkeit studiert wird.
-, .'hl
:)-_" Resume. La borne de Cramér Rao est un moven utle pour évaluer I'efficacité d'une méthode d’estimation. On étudie dans
i . vet article "estimation de modéles de type AR pius bruit. On donne des tormules explicites permettant Je calculer de maniére
’:) L numenquement etficace ces bornes de Cramer Rao. On examine de plus prés le cas de la rréquence centrate et la bande
ey a passante d'une fréquence noyé dans du bruit. Ces résuitats sont illustrés par des simulations.
15 ‘
X
:§ Keywords. Autoregressive, Cramér Rao bound, asymptotic error anaiysis.
"%
3 2
% F"
o 1. Introduction other words,
A%l - ®
-‘}:\ ‘hw . . WX + Wy, (1 )
RO The problem of estimating the parameters of . ‘
Aok signals from their noisy measurements arises in where x. is the signal. w, is a zero-mean white noise
N M - . . . . M 3 - H 3
RN many engineering applications. A common model process with variance o, and v, is the observed
NN for a wide-sense stationary random signal is the data. The autoregressive signal obeys the stochastic
; autoregressive (AR) model. The signal is assumed difference equation,
Do s to be corrupted by white measurement noise. In n
At ‘ X, ==Y ax,_ ~u 12)
L o Lt - Yt " -~
.‘ -~ S Y
N * This work was supported by the Army Research Office where u, is a zero-mean white notse process with
DS under Contract No. DAAG29-33-C.0027. variance .
et

Y J165.1684,%5,83 30T 1985 Elsevier Science Publishers B. V. « North.Hoiland!
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292 B. Friedlander, B. Porat ! Estmating AR signals in white noise

A considerable number of papers in the
engineering and statistical literature treat the pro-
cessing and estimation of autoregressive signals,
see e.g., (1-6]. A useful tool for evalyating the
performance of such AR estimation techniques, is
the Cramer-Rao lower bound (CRLB) on the
covariance matrix of the estimated parameters [7],
{8]. Comparison of the covariance matrix of a given
parameter estimation technique to the CRLB pro-
vides a measure of the accuracy of that technique.

While the CRLB has been known for quite some
time, relatively little work seems to have been done
on its computational aspects. [n [4], [9] a simple
numerical integration procedure for computing the
CRLB is proposed, based on an asymptotic CRLB
formula due to Whittle [10]. In the case of narrow-
band AR Processes considerable care must be
taken to avoid excessive numerical errors. In this
paper (Section 2) we present an explicit formula
for the asymptotic CRLB tor AR plus-noise proces-
ses, which does not involve numerical integration.

[n many applications one is interested not in the
AR parameters. but in some function of these
parameters such as the center frequency, band-
width and power of narrowband spectral lines. In
Section 3 we present formulas for computing the
CRLB of a general tunction of the AR-plus-noise
parameters and of some special commonly used
functions.

In Section 4 we present a few examples illustrat-
ing how to use the CRLB to study the effect of
various signal and noise parameters on estimation
accuracy.

2. An explicit formula for the Fisher information
matrix

In this section we derive an explicit expression
for the Fisher information matrix for the param-
aters {a,, ..., a, o, o-}. The inverse of the Fisher

information matrix provides the Cramer-Rao
lower bound on the estimation errors associated
with rhese parameters. The derivation is somewhat
lengthy, and wil! be performed in three steps. We

Signai Processing

start by introducing the spectral density function
S(z) of the AR-plus-noise process and computing
its derivatives with respect to the various para-
meters. Using Whittle's formula for the asymptotic
form of the Fisher information matrix [10] we
express the entries of this matrix by compiex
integrals involving the spectrum S(z) and its
derivatives. Finally we evaluate these complex
integrals using certain facts from the theory of
discrete Lyapunov equations.

2.1. The spectrum and its derivatives

The spectrum of an AR-plus-Noise process

defined in (1) 12) is given by
oL L ol+ola(aiz™h
Sizy= -0, = = .
a(z)atz"") atzyalz™")
(3)
where
atsi=l+az+- - +a,:". (4)

has all of its roots outside the unit circle. Let ct )
and K be defined by

givolatalz"y = Keiz)ctz™, (5)

where ctz) is the unique monic stable spectral
factor of the ieft-hand side of 5). ie..

clzy=l=+cz+--+c,2" 16)

n=

and c(z) has all of its roots outside the unit circle.
S(z) and its inverse are given by

Ke(z)elz™")
Siz)=——:
) a(z)a(z"")
. a(z)afz"") -
2) = — (h)]
ST Ket=rei=™h

To compute the Fisher information matrix we need
expressions for the partial derivatives of S(z) with
respect to the parameters {a.,...,d. 0%, oL}
Straightforward calculations show that

ooz"

T - —, {8a)
da, a‘(zjalz™hy atzrattz™h
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as(z) l

ar:  at2alz"'y (8b)
aS(z

- (: ) = (8¢)
Ao,

As we will see next, the following quantities are
also required.

_i&s-l(:’= out -
aay Ka(z)e(z)e(27Y)
I =k

“Kamhamay

a::-,)s- )= Kc(:)lc(:")' (%)

S

2.2. Whitle's formula

Let S(:) be the spectral density function of a
discrete time stationary zero-mean scalar process,
and assume that this spectral function depends on
some parameter vector 8=[8,,...,8,]". It was
shown by Whittle [ 10] that the asymptotic form of
the Fisher information matrix [y associated with
these parameters is given by

In=[hi], lsklsm, (10a)
aS(2) ._, 85( ) amt
I= 4«U§aek (2)—— S()
(lOb)

where 4 represents counter-clockwise integration
on the unit circle (z=¢*), and N is the number
of data points used to estimate the parameters 4,
In the AR-plus-noise case the entries of the Fisher
information matrix are given by,

N1 ﬁ s-! ..E =1 d_z

==— s

2 2wj ) aa, ada,
4 ~tk+l)
N[l§ N S
2nj ] K2z Yat(z™") 2

1 04'-”‘ n dz
+-— — -
2wj§ Ke*(2)e*(z MYa(z)a(z™") 2 ]’

lsk!lsn (rn)

I,,J

[Lno-l = lnol.k

N1 S

= S s

2 2% ] 2ay 80,. ?

_N_1_§ ouz dz
T T ] KRz Ya(z™ 2
Isk=n, (12)

Ilgn*: =lne2k

=—— -——S '—-—-S' d_z
aa,‘ 00., 4
: -k
= N—- og.al{z)z d_
2171 K*c*(2)ei(="") 27
l<ks=sn, (13
[ N1 aS ‘d:
neln+l ZE 50 ?
N1 1 d
= —— z (14)

22m ] Ki(a)ei=™")
[nol.vn': = Iuol.nvl

N1 S _, 88 __,d:
=c—Q@— — 5 -
2 2xj ) doy Aoy, z
Nt [ a(nal(z™ d:
229 ) Kictize =" 20

N a : <
ln-: ar2 = l [—S" s—l] d-
" ’ 211} J Laoy, z

(15)

LY PR -
S Llpglfal ) d
22w ) Koc*(z)e?(27) =
These expressions can be evaluated by numerical
integration. However, if either a(z) or ¢(:) have
roots very close to the unit circle considerabie care
needs to be exercised to avoid numerical probiems.
A more attractive way of computing [, is
described next.

2.3. Evaluation of the complex integrals

To evaluate the integrals in (11)-(16) we must
first introduce some notation. Let the polynomial
¥(2) be defined by

yiz)metzy= |y 2+ by 2™ )

Vol. 3. No. }, June 198§
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The stability of y(z) follows from the stability of
ctz). Next denote
l x

————— V-ll ==
y(:)y(:")sl.-:""' U= vee (8

=" =72 N ¢
| 0
C.= . o1
0 .
1 0
378 0
o o :
;" : €1y 0 i
Vospe * 1

Then it can be shown [13] that
o= el Gy
={U(CH " e, (= =2n+1. (19)

Similary, we denote

a—(R:T:"T‘,.‘::,""‘ m=rey (20)
e -a, .
a=|" 0 0
0 1 0

1
: oj . 210
Fenera Ll
Then

rl=e':(Ac)l+n-lp
=pT (AN e, IZ-n+1. (22

Next define,

m‘_,) =,.§.., k™. (23)
Then )
k= €](A)™e,
=e/(A)™e,, m=0, (24)

Signal Processing

where ¢,=[1,0,...,0)" =an n-dimensional unit
vector. Finally, let

atz)=a’(s)=1+a,z2+ - ay,z" (25)
—a, =ay °~°° Ta,
B, = ] 0 0 ,
0 1 o
a(:")=..§:o &ms " (26)
Then
gn=281(B])"é; m=0, 2n

where & =[0,1,...,0]" =a 2n-dimensional unit
vector.

Using the quantities {v, r, h,, g} defined above,
we can now evaluate the various complex integrals
introduced earlier. The first integral in (11) is just
the coefficient of z“*! in the power series expansion
of

1

vy ez

Note that,
1 1 x . 0 _
. = . ¥ m
v yiz™Y alz™h e o m'-og"'z
N
lm—x m=g
(28)
Thus,
1 z—(kvl) d:
'2-;;§ Y=z Dalz ) 2
= 2 vk-lc-mgm
meaQ
= T {TCD I3 e, 8 BL)TE,
m=(Q
= (T(CT)k+lo:n-|
[ £ cnrentir]
met
= ;T(C:)kﬂ#Zn—IGSél
=[vk’l¢-2n—ly LR} ukol]GSélv (29)
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where the matrices S and G are defined in egs.
tAl) and (A3) of the Appendix.

The second integral in (11) is the coefficient of
=*~' in the power series expansion of

|
y(2)yiz Da(zra(z™'y

Note that,

I
y(2)y(z"aizalz™h

< x
' -
=% p ¥ orez"
tm—x mm—x
x x
=T I oo (30)
lm-X m=-
Hence
1 R dz
: = -y -
29i ] y(2)y(z Ha(z)a(z"") =
<
= Z Uketemlm
m=-x
x -1
= : Pl et om T & Tmlk-tem
”m =) me-x
x *
= : ’mvk—lom+ : FomUk—i-m
LT D} me|
x x
= : Il ~tem + : Imlmei—k
L2 D] mm=t
x x
= Z Ialmei— + : ImPmaicik = Tol1-y
mm ma(

x
= : ;T(C:’):n-|Ok—l—mezne:'(Ac)mtn-lp

=)

+ E ;T( C:):n-lw-kﬁm
m=y
X eIneI( At)m-n_lp =~ Folt-x
={T(CT):n-l—k-l
¢
©
| L (CI)”'e:.eI(Ac)”'}(Ac;""p

mw)

+ ;T( CI):n—lvl—k

L0 TG Tha% SRR

T CA L RN - LRGN
W% R e S s
WAL AG RN A RIS A

x[ T <CI)"‘e;neI(Ac;"']

me
X(AN""'p = roU—k
] U PRI (¢
X UH[Fyegs .o o7
> u-«]G
S L AT (31)

where U and H are defined in eqgs. (A8) and (A9)
of the Appendix.

The integral in (12) can be evaluated similarly
to the integral in (29), using a(z~") instead of
a(z™'). The result of this evaluation is

pl CRPTRY

x UH[r,-y, ..

* ot g
273 T vinyvizThats") 2

= ;T( CI)k’Zn—I GUe|

LR ] vk]GUeP (32)

=[tkezamiy -

It is straightforward to check that the integral in
(13) is given by

1 a(z)iz™™ dz &
¢§—'—-—= T av

2w ) vicyvizh & T

aosl. (33)

The integral in (14) is given by,

{ 1 ds

Lyt dr 4
P R T IL  a E (34)

and the integral in (15) is given by

1 a(z)a(z”"Ydz o -
—_—) ————— =T ¥ e
21rj§ y(2)y(z™Y = S mm Gramt

=) m=Q
Finally, the integrai in (10) is given by

I falinaz"1dz i =
§ Y(Z)'y(:") = =L L CCml—m
(36)

Egs. (29), (31)-(38) provide explicit expressions
for computing the entries of the Fisher information
matrix. The computation . the quantities appear-
ing in these equations (the scalars v, r, and the
martrices G, S, U, H) is discussed in the Appendix.
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;::::" 3. Bounds on the estimates of spectral parameters 3.2. The signal-plus-noise spectrum
o . . To evaluate the bounds on the signal-plus-noise
-\ In the previous section we developed the w .
' . . , . spectrum S(e’) we must evaluate the entries of
,“;“' asymptotic bounds on variance of unbiased esti- _
A mates of the AR parameters 0 =[a,,...,a. o, Dr;[ﬁS(e"")
e a.]". In many applications one is interested not ' aa, "
';iﬁ;l in the AR parameters, but in some function of 3S(e) aS(e™) 4S(e™)
'.“;‘ . these parameters, such as the spectrum of the sig- S ] (39)
et ’ nal-plus-noise (cf. (3)) or the signal only, 1 “ v
10 Straightforward differentiation of equation (3)
R . g
ol ) .
Sz = — (37 gives the following:
.- a(atz™") D 2 S
Y ) 2% Re{ : } (40a)
o In the case of signals with narrowband spectra we aa, ate’a(e™) ate™) ]’
e may be interested in spectral parameters such as aS(e'™) 1
’ bandwidth, center-frequency and power of each o = ate™)ale ™y’ (40b)
‘.f) narrowband component. In this section we derive
1 the formulas for computing the bound on the esti- aSie™) _ 1 (40¢)
Ry mation error of various functions of the AR-plus- Ay,

noise parameters.

e To 2valuate the bound on the signal spectrum
) S.(e'”) we must use

" 3.1. A general formula . [aS(e’“‘)
o Given a scalar function f(8) of a parameter ) ey T
(;,:5‘ vector 9=[9,,...,0,]", the variance of any #S(e’*) 3S(e™*)
:»:i‘ ’ unbiased estimator of f{#) from N data points is Ervenniareail (41)
l:::: . bounded from below by the foilowing generalized " ‘
:.3 i Cramer-Rao bound [I1}: 3.3. Speciral parameters of a second order AR-plus-
'J:i" Var{f‘( 9} = Drlt,‘ D. (38a) noise process
\)
Kry Consider a second order AR process with a
3. where polynomial having a complex pair of roots at

) =),

D\ pra |8 318) pe .
2 L a8, " ae, a(zy=l+az+a.z"
" =1-2 s+pis 42
4‘_{ = vector of partial derivatives, (38b) I =2p cos wnz+p (42)

Iy =the Fisher information

matrix associated with estimating

The central frequency f, of the spectrum of this
process is defined by the angle (or phase) of the
roots:

w - So=wy/2m. (43)
LR . .
: 8 8 tef. (10)). (38¢) To compute the bound on the estimation error
4 . . . . of f, we must evaluate
:' -4 The computation of [y was discussed in detail in fo
i}i Section 2. It remains to evaluate the derivative DTa Afo o Afo f%] (44)
N vector D for the functions of interest. 3 aa,’ ha.’ do> dol )
i Sugnat Procescing
“ Q"
._:{.
P
R
A4
§‘ s
4The
A7
s
:ﬁ“ ( . Tt M

-
-
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The partial derivatives are given by

i 1

—=———, (45)
ady, 2davda,-a;
(.’_jig._____-a' (46)
Ads  4waan da, - l}f
afo  Afy
g, (47)

g, Ao,

Another frequency of interest is the frequency
/ for which S(e’”) is maximized. Note that in the
second order case

-

7

S.(e)y= — (48
(lraj+a:)+2a,(l+as) (48)

COs w +2a,<os 2w.
The frequency at which S.1e’) is maximum is

the frequency at which 1/ S.(e’) is minimum. We
find this frequency by setting the derivative to zero:

]
— 1/ 8. (e!*))
ow

= -2sin wla,( 1 ~a.) -4a. cos w]
=0. (49)

The points w =0 and w = = correspond to minima
of §,t{w). The maximum is attained at

- l - {l“' *)
f=5=cos '(—ﬂja—a‘-). (50)
In this case

.= (_)‘.

DI=[?—",—’.0.0]. (51)
na, r'ia-_-

where

A1 e (52)

da lwsinw 4a.

AL a (53)

4as  2wsin @ 4a3

Another spectral parameter of practical interest
is the bandwidth of the spectrum. We will use the

so-called noise bandwidth defined by

l -
:J" S(e*)dw

)

S.(e)

B=

(54)

The numerator is the energy contained in the posi-
tive frequencies, while the denominator is the peak
energy density. The resulting B is normalized with
respect to 0.5 Hz, ti.e., for white noise, B=0.5 Hz).
Note that

l "
—J‘ S eV dw

Ve
)

_ (1+a4) (53
Al-aNl+as+a )l +a.-a,)
. 4a.
S e = ————— (§
i —a,)"4a, - ajy) (36)
Thus,
(i=dastl—a,)(da,-aj)
] a:)4a; - a; (ST)

T Saxl+a.+a)l+a.—a,)

To evaluate the bound on the error variance of
B we need to compute

#B ~B
;=[____1-_o,o]. (58)
na, Ha: -
Note that
dlog B -la, | . 1
ad, da.-a; l+a.+a, l+a,—a,
(59a)
ilog B | 1 4
= - -+ <
Aa- l+a, |-a. 4a.-aj;
1 | 1
- -— . (59b)
a l+a,vra, l+a,-aq
Thus,
AB alog B
LLAAL L) (60a)
oad, nd,

aB log B
.——- = —-"— . B
na-_. a-

(60b)
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Finally, we consider the signal power, defined as

1 : d=
Peem—2 (61)

2= ] a(z)a(z7") =

For second-order AR process, the complex integral
yields

_ oull +a,)
(l=ag){lra+a)l+a.—-a)

(62)

To evaluate the bound on P we must compute
AP AP
Dls[f-f."—’i.-_-—,‘o]. (63)
aa, Aa; 60,
Note that

a 10g P_ { i

~a, l+a.-a, l+a.+a,’

alog P 1 1
= +
f"'al l+a: l‘a:
1 I
l',‘az+a| l+az-a|.

—=——0"F, (65a)

P (63b)
and finally,
—_—e=—P (66)

Inserting D, in (38a) gives an explicit formula for
computing the CRLB for various spectral param-
eters of practical interest.

4. Some examples

In this section we present a few examples illus-
trating the usefuiness of the bounds derived in the
previous sections. Two AR models are considered:

S;:alz)=1-1.4:+095z° (narrowband)

Sy alzy=1-045z+0.55z" (broadband)

Stgnai Processing
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4.1. Spectral bounds

Using the derivative vector D, (39) we computed
the CRLB for the signal-plus-noise spectrum for
S, and 8., at different frequencies. The true spec-
trum and the =1 standard deviation curves are
depicted in Fig. | and 2. These plots provide some
insight into the achievable spectral estimation
accuracy for the given signal and noise parameters.

4.2. Bounds on center frequency, bandwidth and
power

Using the derivative vectors in equations (51),
(58) and (63) we computed the CRLB for f, B and
P for S, and S., at different signal-to-noise ratios.
The results are summarized in Tables | and 2.

Examination of these tables reveals various
interesting facts. In the narrowband case the center
frequency can be estimated much more accurately
than bandwidth and power. Note for example that
at SNR =3 dB the relative accuracy (i.e., standard
deviation divided by the mean) of f is 0.8%, of B
25% and of P 20%. The situation is similar in the
broadband case. However, the center frequency is
estimated less accurately than in the narrowband
case. For example. at SNR=3dB the refative
accuracies of f, B and P are 2.4%, 15% and 16%.
This type of behavior has been observed in simula-
tion studies of various parametric spectral estima-
tion techniques.

Table |

Bounds on the standard deviation of the estimates of f, 8 and
Patz)=i—132"'+095:""; o =0.04709; N = 1024

SNR(dB) [ =0.1223 8=001281 P=1.0
+3 0.9440 - 107* 0.3153 - 107? 0.2005
0 0.1016 - 107* 0.3473 - 107 .2068
-3 0.1128-107%  0.3970-10"*  0.2200
-6 0.1309- 107 0.4772 107 0.2482
-9 0.1612- 1073 0.6125-1072  0.3072
-12 .2147-107° 08528 -107°  0.4278
-1 0.3137-107° 0.1299 - 10~ 0.6691

"":
ate

¥
»

gy

oA

[

r




2

- -
& ]
.

4

o
\ s

| A

A

Table 2
Bounds on the standard deviation of the estimates of f, B and
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Fig. 1. Spectral bound for S,. o5 =0.04709, o> = 0.1, SNR=10dB, V = 256.

Paiz=1-045:""+0.55:"": o} =0.6384: N = (024
SNR(dB) [ =0.1986 8=0.1439 P=1.0
-3 0.4792-10°  0.2257- 10" 0.1154

0 0.6091 - 1071 0.2940- [0~ 0.1607
-3 0.3486 - 1070  0.4227 (0~ 0.2493
-6 0.1303 - 10~ 0.6698 10~ 0.4224
-9 0.2188 - 107" 0.1153 0.7637
xS SO R TR SO
DAL 4 - Ch L1

5. Conclusions

We presented formulas for computing the CRLB
for different spectral parameters of an AR-plus-
noise process. The proposed formulas make it
possible to compute the CRLB without requiring
numerical integration. These bounds provide a use-
ful reference point for the performance evaluation
of autoregressive estimation techniques.
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:" Appendix: Some Lyapunev equations where &, =[1,0,...,0]" is a 2n-dimensional unit

t-{ vector. Moreover, stability of the polynomials y{z) Ea
\ Let and al:) guarantees that (Al) is the unique solu-

. tion of (A2) [15]. . .
: N ] i .

:.3 s = v ‘C )méle-"r( Bll')m (Al) Let G be the matrix 4

d m-l) : :

\ | '} ‘
{ '." ‘
: f:.‘ S clearly satisties the Lyapunov equation G= 0 : g (A3) o

" S-C.SBI=¢¢, (A2) | v, ,,"_,J
,‘l nanal Procesung "
™ Y
), ‘ b\
"::o 'j
,’..

\.,
K}

lacd

N

e oy % .-.r,{ SR SRy
.;:.’-: 'J'"\-‘i' 's. .\ o \5\.*@\5 '0\"’\‘- u\ _. ) T




W"'"'“‘ L wal rak o uiited her-8 Ryl )

)
-
7
‘ B. Friedlander, B. Porat Estmating AR signais in white nose 301
It can be checked by direct computation that entries are fully determined by their first row and
~ column.
f‘*‘ GC. =C!G. (Ad) .
. To compute {v;} we solve the Lvapunov equation
Hence: _
" X-CXCI=¢eé], (Al2)
" GS-CIGSB! = GS- GC.SB! . . .
- o where X is a Toeplitz matrix. The first 2n terms
=G(S-C.5B) of {v} are the entries of the first column of X.
’r =Gé &t =8, (AS) nghe'r order terms of {v;} are obtained from the
s recursion
- It follows that, .
-n
x ==Y yu_, [=2n (A3}
% GS= S (CH™e,, 8T BH™. {A6) -
-y} . . h
" Similarly, the first n terms {r,} are the entries of
Let the first column (or row) of the Toeplitz matrix Y,
) x where
&‘ LU= S (Coméel(AD™ (A7)
man Y-A YA =ee]. (A14)
L .di . . . i
0 where ¢, --[l'. 0 --..0]" =an n-dimensional unit Higher order terms of {r} are obtained from the
Yy vector. U satisfies recursion
’ U=-C.UAT =&l (A8) -
. ¢ e n=-Yar., l2n (ALS)
i Let H be the matrix =
) These formulas are explained in more detail in [13].
- 0 . a
X H= l- - (A9)
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Optimal Instrumental Variable Estimates of the AR
Parameters of an ARMA Process

PETRE STOICA, TORSTEN SODERSTROM, seniOr MEMBER, IEEE, AND BENJAMIN FRIEDLANDER, SeNIOR MEMBER, IEEE

Abstract—The modified Yule-Waiker (MYW) equations for estimat-
ing the AR parameters of 1a ARMA process are presented as s special
case of am instrumental varisble (IV) method. The comsistency and
asccuracy of the AR parameter estimates are studied. It is shown that
estimation accuracy incresses moanotonically with the number of MYW
equations for sa optimal choice of the weighting matrix used in the least-
squares solution of these equations. The asymptotic error covariance of
the optimal 1V method equails that of the predictioa error method. The
resuits of this paper verify experimentsl resuits reported in the literature
regardiag the performance of the MYW method, and provide the
necessarv accuracy analysis. Furthermore, they suggest several simple,
asvmptotically efficient. multistep aigorithms for estimating the AR
parumeters. which are presented in a companion paper.

{. INTRODUCTION

HE need for estimating the parameters of an autoregressive

moving-average (ARMA) process arises in many applications
in the areas of signal processing, spectral analysis. and system
identification. A computationally attractive estimation procedure,
which has received considerable attention in the literature, is
based on a two-step approach: first the autoregressive (AR)
parameters are estimated using the modified Yule-Walker
(MYW) equations; then the moving average (MA) parameters are
estimated by one of several available techniques.

In this paper we consider only the first step of estimating the
autoregressive parameters. In many engineering applications the
second estimation step is not needed. The prime example is the
estimation of autoregressive signals corrupted by white measure-
ment noise. In this case all the information about the spectrai
shape of the signal lies in the AR parameters of the signal-plus-
noise ARMA process (see, e.g., [29]).

The relative simplicity of the MYW estimator motivated a
number of authors to investigate this technique and to develop
various extensions and variations {1]-{10]. Most of this work has
been done in the context of high resolution spectral analysis. One
of the important observations made in these studies is that
significant improvements in estimation accuracy can be obtained
by increasing the number of MYW equations (2], [9]). The
resulting set of overdetermined equations is then soived by some
least-squares technique. The possibility of using a weighted least-
squares procedure was also discussed (see, e.g.. (1], [2]).

Performance evaluation of the MYW method has in the past
been done by simulation. A formal accuracy theory appears to be
lacking. It is our objective in this paper to fill this gap and provide
an asymptotic accuracy analysis. This analysis clarnifies the precise
role of increasing the number of equations and of including a
weighting matrix. It provides a valuable verification for experi-
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mental observations as well as guidelines for further improve-
ments of MYW based ARMA estimation techniques.

The MYW method is related to the instrumental variable (1V)
method of parameter estimation (8], {11], [12]. In Section II we
define an IV estimator which is slightly more general than the
MYW estimators presented in the literature. In Section [II we
establish the consistency of the IV estimates and develop an
explicit formula for the covariance matrix of the estimation
errors. This formula can be used to evaluate the asymptotic
performance of various MYW algorithms proposed in the
literature (23], [30]. In Section IV we study the opumxzauon of
estimation accuracy with respect to the weighting matrix and the
number of equations. We show the existence of an optimal choice
of the weighting matrix, which minimizes the covaniance matrix
of the estimation errors. Furthermore, we show that the optimai
error covariance matrix decrsases monotonicaily when the num-
ber of equations is increased. and converges as the number of
equations tends to infinity. The form of this limiting matrix is also
presented. and in Section V it is shown that it ecquals the
asymptotic error covariance of the prediction error method. The
etfect of a cenain filter used in the generation of the instrumental
variables on the convergence rate of the error covariance matnx
of the optimally weighted [V estimate is studied in Section VI. It is
shown that there exists an optimal choice of this filter which gives
the fastest convergence rate.

The optimal IV methods presented in this paper can be used to
derive several new AR parameter estimation algorithms with
improved accuracy and modest computational cost. In a compan-
ion paper [24] we present several such algorithms, analyze their
asymptotic properties. and evaluate their performance by simula-
tion.

Finally, we note that results related to those presented here
appeared recently in [31]-[33]. The problem considered in these
references is the estimation of the parameters of dynamic
econometric models by IV methods with instruments that are not
exogenous. The approach used in [31]-{33] is based on a different
formalism from the one used here.

lI. THE ESTIMATION METHOD
Consider the following ARMA process of order (na, nc):
' A@ YY) =Clg~ et (1)

where e(f) is a white noise process with zero mean and variance
A%, and

A(@ Nml+ag="+ " +00eq ™™,

Cl@ =l+cqg™'+  +caq™™,

q ~'=unit delay operator (g ~'y()=y(t~1)).

The following assumptions are made:

Al: A7) = 0= |z} > 1;C2) = 0= |z} > L. Ino(her
words, the ARMA representation (1) is stable and invertibie. This
is not a restrictive assumption (cf. the spectral factorization
theorem, e.g., [28]).
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where
S=E{{C(qg~HZIC(q ~Hz(tN T} (19

with 8, R defined by (6) and (11). S

Theorem | can be used to evaluate various choices of Q, G(-),
and m by comparing the accuracies of the resulting estimates. In
(30] we evaluated P for some low-order ARMA systems and
various choices of Q and m (with G(g~') = 1). It was observed
that accuracy does not increase monotonically with m, in contrast
with statements sometimes made in the literature on the overdeter-
mined MYW equations (2], {3]. Furthermore, it appears difficuit,
if not impossible, to predict which ad-hoc weighting matrix Q will
lead to best accuracy.

We have also compared the accuracy of the IV estimate to that
given by the prediction error method (PEM) (18], {19}, {26], for
some simple low-order systems; sce, ¢.g., Exampie | in Section
V and the examples in [23]. Recall that in the Gaussian case, the
PEM error covariance matrix equals the Cramér-Rao lower
bound. The differences in accuracy between the [V method and
the PEM were sometimes coasiderable, indicating that the IV
estimator with ad-hoc choices of Q, m, and G(q -') is inefficient
(in the statistical sense).

The questions raised above motivate the more detailed exami-
nation of the accuracy aspects of the [V estimates. In panticular, it
is of interest to choose Q, m, and G(g ~') so as to increase the
accuracy of the IV estimate (6). This is discussed in Sections IV-
VL

[V. OPTIMIZATION OF ESTIMATION ACCURACY

The problem of determining optimal IV estimates in the fairly
general class of estimates defined by (6) can be stated as follows.
Find Quu, Mow, ad Gopl(g™") such that the corresponding
covariance matrix Py, has the property P 2 P, where P
corresponds to any other admissible choice of Q, m, and G. This
type of probiem was swdied in [12], [13] for systems with
exogenous inputs, such as ARMAX systems. The results of [12],
{13] cannot be applied directly to the ARMA problem, as is
explained in [30]. Therefore, we must approach the accuracy
optimization in another way. As we will see, the optimization with
respect to Q, m, and G{(q ~') can be treated in three distinct steps.
We start with the optimization of P given by (14) with respect to
the weighting matrix Q, for which the following resuit holds.

Theorem 2: Consider the matrix P defined in (14). We have

P3(RTS-'R)-'aP,.
Furthermore, the equality 2 = B, holds if and only if
SQR=R(RTS-'R)-Y(RTQR).
Proof: 1t is straightforward to show that

(16)
am

P-B, =((RTQR)-'RTQ—(RTS-'R)~'RTS-"

- SRTQR)-'RTQ-(RTS-'R)-'RTS-"1T. (18)
Since S > 0, (16) and (17) follow. -]

Note that (16) is closely related to the Gauss-Markov theorem
in regression theory (22). An obvious way to satisfy (17) is to
setQ = S-\, in whichcase P = P,

Next we consider the optimization of B,, with respect o m. In
Section VI (Lemma 2) we will formaily prove that for the
optimal choice of Q, estimation accuracy increases monotoni-
cally with m, ie., Py 3 Po,, for all m 3 na. As was
mentioned ecarlier, this is not true for arbitrary choices of Q 23],
Note that the results above are valid for general [V estimation

. The detailed structure of the matrices R and S is not
used anywhere in the proofs. Note aiso that for AR systems it can
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be shown that P,, = P.(m 2 na) (21). However, for ARMA
processes we have in general P, > P,.,.

Since B, is monotonically decreasing and also B, > 0, it
follows that A, will converge to a limit as /n tends 1o infinity. A
formal discussion of the convergence of P, is given in Appendix
B where it is also shown that

P.s.l.i_m_ Pu=NIE{SUNWTOIE(We TN (18)

where y{¢) is the following infinite-dimensional vector:

e(t=nc-1)

WOy m e | A== D) (19)

Cig™h

The limiting error covariance matrix P. can be evaluted by
solving a certain discrete Lyapunov equation (see (A.5) in
Appendix A and (B.17) in Appendix B). Note that P, is
independent of G(-). We will show, however, in Section VI that
the choice of G(-) affects the ‘‘convergence rate’” of P.,.

V. COMPARISON OF THE ACCURACIES OF THE OpTiMAL IV
METHOD AND THE PREDICTION ERROR METHOD

The prediction error method has been studied widely in the
context of system identification (18], [19], [26]. The prediction
error estimate of the parameters {a,, ¢,} of an ARMA system is
obtained by minimizing the loss function

N
)= Y €l

t=f

VN(&(, Tty dﬂ! c.lv . (20)

where

A
e(0) =3-% ). @n

The prediction error estimate is known to be asymptoticaily
normally distributed with the following normalized covariance
matrix:

'ET,. g, OV {d1, -1 dues &0 v 0, Euc)
- [5{[ f\‘b‘z’(’,)] THO -'hr(!)l}] G
where
w.’(r)-ﬁ[«{—n. - ett=nal, @)
W{(ﬁ’c—(;—_T)le(I-l)' -, ett=no)l. o

It is straightforward to show from~(22) that the normalized
covariance matrix of the AR parameter estimates obtained by the
PEM is given by

Prod lim % cov {8} =(Dy -DpDL' DN, (29)

where
a'[du. <o, dud”, (26a)
D,,-EN,((M,TU)'}, i j=1, 2. (26b)
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The following result states that the optimal IV method has the
same asymptotic accuracy as the PEM.

Theorem 3: Let P, and Ppen be the covariance matrices
defined by (18) and (23)-(26), respectively. Then, under assump-
tions Al-A3 P. = Ppguy.

Proof: See Appendix A.

As was mentioned earlier,"in the Gaussian case, the PEM is an
efficiers estimator, i.e., Ppegy cquals the Cramér-Rao lower
bound [19], {22]. We conclude therefore that the optimal [V
method is an efficient estimator for Gaussian processes. If the
data are not Gaussian, then the optimal [V estimate, like the PE
estimate, will still give the minimum variance in the fairly large
class of parameter estimators whose covariance matrices depend
only on the second-order statistics of the data.

_ Itis interesting to investigate the rate at which B, converges to

P, = Ppen, since in practice the vaiue of m cannot be too large.
The ‘‘convergence rate’* of P, is illustrated by the following
examples.

Example 1: Convergence of P, to Ppgy: Consider the
ARMA processes

S (1-0.8¢ " "Yv()=(1+0.7¢ " Ne(r)
S (1=1.5¢"'+0.7g )y =(1 -q ' +0.2¢ ~e(t)

where in both cases E{etne(s)} = 5,,{\* = 1). For both S, and
S, we evaluated Py, and the optimal covariance matrix B,,, for
G(z)= landm = na, na + 1, - The results are shown in
Table . where 5“ denotes the (i, j)th element of P,,. Note that B,
has e<sentially converged for m = 15. It is interesting to compare
the accuracy of the optimal IV method to that of the basic
modified Yule~Waiker method (m = na, in which case the choice
of Q is irrelevant). The difference in accuracies can be quite
large. For example in the case of S;, the ratio of the variances of
@, corresponding to the two methods is about 30. For higher order
systems the difference of accuracy between the methods may be
larger (see (30)).

Example 2: Convergence of P, t0 Ppgy’ Note that B.
approaches Ppen more or less at an exponential rate (cf. Exampie
1). To investigate the convergence rate in more detail consider the
general ARMA (1, 1) process

y()= —ay(t-1)+e(t)+ce(r-1). @n
Assuming that
B Pegy+Ky™", 0<y<l, K=constant, (28)

it seems reasonable to plot In{(P,, —= Peen)/Ppem] versus m. This
is done in Figs. | and 2 for G(g ~') = | and different values of the
parameters g and c. [t can be seen that except for small values of
m, the curves can be well approximated by straight lines. This
justifies the assumption in (28). It is interesting to note that the
convergence rate depends strongly on ¢, and only weakly on a.
The convergence is particularly siow when ¢ is close to -~ 1 (zero
near the unit circle).

Similar results hold for ¢ close to + 1. The large variations in
convergence rates for different parameters of the data motivates
the study of ways for improving the convergence rate. In the next
section we show how the choice of G{q~') affects the conver-
gence rate.

V1. Tue OpriMAL CHOICE OF G(g ")

In this section we show that the choice G(g~') = 1/CHq~"Y)
will ensure that optimas estimation accuracy is achieved for a
finite m, in fact for m = na. To see this we state the following
lemma. Note that in the following cajculations we will add the
subscript m to R, S, z(¢), etc., to emphasize their dependence on
the number of instrumental vambles

Lemma 2: The matrices { B} form a nonincreasing sequence,

1069
TABLE |
CONVERGENCE OF B, TO A. = Pype FOR §, AND S,
I LS e
hreses l

|8l 51 312 p22
1 0.4711 - - -
2 0.426 52.190 -16.320 6.276
3 0.409 8.577 -2.181 1.689
4 0.401 3.298 -1.151 1.488
5 0.397 2.147 -1.093 1.485
3 0.39¢ 1.804 RRES 1.481
8 0.391 1.626 -1.189 1.461
10 0.39%0 1.589 -1.213 1.445
12 9.390 1.580 -1.222 1.436
14 0.389 1.577 -1.226 1.431
16 0.389 1.576 -1.227 1.429
18 0.389 1.5% -1.227 1.429
20 0.389 1.576 -1.227 1.429
i, | oame | s | | L

0 10 T T e e owm
Fig. I. The convergence of B,,, ¢ = -0.9, varying a.

.
AL RUNYL IO

e

N . » i » T e ()

Fig. 2. The convergence of 5,, ¢ = -0.9, varying a.
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i.6.. Prg 3 Prgoy 3 **+ 3 Pa. Funthermore, all the equalities P
hold if and only if ,**
-1
RIS 'xe=0 for m3na (29) R = : . (A.D)
Feonae
where R... S. are as defined by (11), (15), and ) l
It is straightforward to show that
e(t-1)
x.iE{C*(r')G(q") : P+ @ e+ + Onelt e
e(t-m) |

C¥q-"YG@™h
YITED) e(t-m l)}. (30)
Proof: See Appendix C. a

It is now easy to see that the choice G(q~') = 1/C¥q - Y, will
satisfy (29) and is. therefore, optimal (although not necessarily the
only optimal choice). We state this formally in the following
theorem.

Theorem 4: Let assumptions A1-A3 hold true and consider the
IV estimate (6) with m = na and G(g~") = 1/C¥q"") (the
choice of Q is irrelevant in this case). Under these conditions the
IV estimate will be optimal in the sense that its asymptotic (N —
@) covanance matrix equals P,(= Ppey).

Proof: Direct consequence of Lemma 2. 7}

VII. ConcLusions

We presented a detailed analysis of the accuracy aspects of a
general [V method for estimating the AR parameters of an ARMA
process. The basic accuracy result (Theorem 1) is useful for
evaluating the performance bounds for the various MYW related
estimation techniques discussed in the literature. See, for exam-
ple, the discussion in [23]. [30].

More importantly, Theorem | can be used 10 investigate the
existence of optimal IV methods. We derived a lower bound on
the estimation accuracy of IV estimators and presented methods
for achieving this bound.

The first method invoived an optimal weighting matrix Q =
S-!, and letting the number m of instrumental variables increase
to mﬁm(y In this case the choice of the filter G(q ~') becomes
unimportant and we may set G{(g~') = | (see Theorem 2).

The second method invoived an optimal filtering operation
Glg~") = 1/CYq""). In this case the asymptotic bound is
achieved for m = na, and the choice of the weigting matrix Q is
unimportant (see Theorem 4).

Furthermore, we have shown that the optimal [V method has
the same (asymptotic) accuracy as the prediction error method
(see Theorem 3.

The methods discussed above suggest two new algorithms for
estimating the AR parameters of ARMA models. These al-
gorithms are discussed in some detail in a companion paper [24].
Note that both of these methods require knowledge of certain
quantities {such as C(g ")) which are not available a priori. In
{24] it is shown that replacing those quantities by their consistent
estimates does not degrade the asymptotic estimation accuracy.

Finally, we note that the optimal weighting matrix Q@ = §-!
(required by the first method) can be estimated without explicit
estimation of the MA parameters. This is convenient in some
applications where one needs only estimates of the AR parame-
ters.

APPENDIX
Proor of THEOREM 3
"Let us introduce the following notation:

Clg-" '
A E{A(q_,)c(o C(q_,)e(r k)}

TR RO PURTIOL IR U

-E{C«r‘)em T _.)e(r k)}

for kznc+ 1, (A.2)
and hence
Kk 'ARA'— iy

where A4 is the following companion matrix associated with the
polynomial A(z):

for kznc+1 (A.3)

—a —ay e —ay
1 0 :

A= . : . (A4
o 1 o

It follows from (A.1)=(A.3) and (18) that

F;I_Ap;l,‘r..l- 3 R',-R,T—A 3 R’,R‘,r AT
A2

iwne tane
!

In other words, P! satisfies the following Lyapunov equation
[see also (B 17)}

Pl -APIAT=REL A9

Since A is a stability matrix, (A.5) has a unique solution, (see,
e.g.. [20]). To show that P, = Pgy it is thus sufficient and
necessary to show that Pj ¢y, satisfies the same Lyapunov equation
(A.5). We do this in the following steps. First note that

A (D)= (1 + 1) = e(thu, (A.6)
where
=100 (A.D
na
and therefore
AD“A T’Dn —lel|ll|r (AS)

where Dy, is as defined in (26b).
Next, we introduce

ey e -
1 0 o0

C= (A.9)
o 10

b ;‘--.g.m"yl.x-,ﬂ W
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where
uy={10 --- 0"

E———

nc

(A.1D)

We can now write
ADuD5'DHAT = AD,CT(CDACNY - 'CD AT
= (D= NuwiNDn - Nuwi) “(Di - Nuwl) (A.12)

where D\;, Dy, Dy are as defined in (26b). It follows from the
. matrix inversion lemma that

AD ;' uwiDy

“Nyuly -t -1
(Dzz Ugldy) .Da + l—quzD;z'uz .

(A.13)

By using (A.8), (A.12), and (A.13) we obtain after some
straightforward but somewhat tedious calculations

(4, -DIZD:-:‘UI)("I - DlzD:_z‘“:)r

-1 -1 2
Prew~ AP oA = T-XulDgu

(A.14)

According to a well-known formula for the inverse of the
covariance matrix of an AR process {27], we have

: 1 Che
Dplur=5 &

= Cac| -t (A.15)
Crc=1 Ci

To proceed we note the following properties of the covariance
elements of D,;. Let

1 i
y,-E{A(q_l) e(?) C(q_,)e(l—k)} .

(A.16)
We have

Vet Vet + " +CacVhane

Cae@"Y, .. 1 _y
E{A(q-')“" ca@ "}

=7, for all k,

(A7

Ye+tCiYaer+ " + CacYhone
=g -l—e(l) - e{t-k)
Al@™"H
Az
(;

If similarly to (A.1) we introduce

k=0

(A.19)
k<0.

T
Y-

Pg'

7!-:-0'!

X T\ 28

'.-‘ ql'.':-A_ \_“-;-’-1.(4‘ \{;’\'-; -; -.\'{‘\J(‘- "‘:‘-
a X 4 1) W I U2 Ly
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then from (A.15)-(A.18) we have that

1 Cae
DlzDz-zI“z'[Po Py Cacail ‘:' T Cne c.,._. /)\1
"n::-l ¢:|

= [)\llq ‘cntrm.-"cnr(l:u‘ Ta)l/N2
"ﬁ'% Kﬂt
which gives
-1 [ R
uy-D,; Dy Up= 33 Ko

To evaluate the denominator of the right-hand side of (A.14), we
use (A.15) to obtain

l—)\:u{D{:'uzsl-(l—ci‘)aci,.
It follows that the right-hand side of (A.14) reduces to 1/

MR, R, which_is precisely the right-hand side of (A.5). We
have shown that P3' and P3¢y obey the same Lyapunov equation

and therefore 52! = Pily.
APPENDIX B

CONVERGENCE OF B,,

In this Appendix we consider the convergence as m — o of the
inverse of the optimal error covariance matrix

P.'=RISA'R, (B.1)

where R,, and S, are defined by (11) and (15), respectively. We
start by introducing the following notation:

fe=E{y(t) - G(q~"W(c-b},

7y
Peay
Rt bl E (B.:)
fk-n‘l
Note that
vafy +- + g/t -ne
=E{A(@~"WN - Gl@~"Wu-Kk)} =0, kzac+l. (B.3)

If we let 4 be the companion matrix defined in (A.4), then (B.3)
implies that

RemAR ., kzpnc+l. (B.4)
Let us also introduce
YO =Clg="Glg "y,
V= EP© - Pe=1) - - m)},
an=EQHO} - ¥aSa V. (B.5)

We can now state the:following resuit.

Lemma B1!: Consider the sequence of matrices 55!, m = 1, 2,

**+ defined by (B.1). The following Lyapunov-type equation

MR

& B xx dE &0 B

—
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r /"/‘l
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holds true and
-1 -1 1 Teo-! I
Pl -AP ' AT=— (R~ ARMS: Vm) . 10
X UmSm'Vm= =¥m| - | +00mumh.  (B.13)
. (R"_AR:S’:H‘M)T' m‘l' 2‘ e (8.6) hm
Proof: First note that according to (B.4) Consider first (B.12). We have
R:Ol‘E{é(') * ::ol(’”’[kwv Rnroh Tty Rmon] hl
r * m
=(Ree, ARn). p1| @ |ak {m : G(q")[z h.y(r-nc-i)]}
Nex(. we have ll.,' 1=l

. ey vaf- o o - .
S.'..'[ o S...] ’[o s;.] =E{¢(I)-G(q")[zh.y(l-nc-t)-y(l-nc)

=0
-l mel
- [ ]l-l. RS e )]}

af | Sa'¥m
Therefore, we can write =Ejou) - —l-_—— e{t - nc)
Clg™"

-1 = r -1 = Fa-t r
Prci=Rue1Sas Rnei= ARRS o Red -E{o(n) - Gg " "wu-nal

1 - -
"’;’ (Rw‘AR:vSmlwannr‘AR:Sml¢m)r +0(“M~I). (B.14)
which concludes the proof. 7  Further straightforward calculations give
Next, we study the limit as m — o of the right-hand side of )
(B.6).
Lemma B2: Let m — . Then, under assumptions Al-A3 0
Ao(y=e(t+ 1)-Clg ey, u = na.
al=\? (B.7a) : (B.15)
0

R.-ARI.S.’.'%.*E{&(!) . E'—_,e(l-nc- l)} akR,..
@) Combining (B.14) and (B.15), we obtain

(B.7b) hy
Proof: Define AR;[ J -Rw-c.gAzu|-Ru+Cqu"|+o(l‘".l)
R
- . A@™"H
hgq ' amp——n=mr (ho=1) (B.8)

,.20 ,Cz(q I)G(q ‘) ,Er_R”‘_+0(“mol). (B|6)

Due to assumptions Al and A3 This equation together with (B.12) implies (B.7b). Next consider
(B.13). We have
LARS Y (B.9)
h
where ¢ is a constant, and 0 < u < 1 is the maximum modulus of rl . ad )
the zeros of C¥qg-')YG(g-'). Now A(g-"ZW() = Um h SE{)’(O : [2 h,-yu-:)]}
C¥q ~"YG(q ~")e(#), so that for m large enough we can write m =t
HO+RJU=1)+ - + had(t=m)+O(u™*") me(!). (B.10) -E{y(:) . [i "n)’('-i)')’(’)*'o(#""):l}
It follows from (B.10) that =0 ’
R =E(O - e} - ELHO}+ 0"
]
=NT= E{FH0} +0™"")
Vm= =Sal o | +O0W™Y. (B-1D  which together with (B.S) and (B.13) proves (B.7a). This
hu concludes the proof of Lemma B2.

It is now straightforward to evaluate . & limy—a P.. The
limit exists since we have shown earlier that 5, 3 P.., > 0 (see
Lemma 2). Furthermore, it follows from Lemmas Bl and B2 that
Ay B! satisfies
ARLS: Vu=—ARL| | +omumen, ®.12) x
A Pl APl AT Rl (B.17)

.
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‘l

: As is well known, under the given assumptions the solution of yt=1) 7
-;. (B.17) is unique and is given by =E{ C(g="G(a-" 4,.§

» . U
=: | = y(t=-m)

K -4 r

Rt Ao kz., ARy {C@ G -1 - yt-mia Ay
. _ wl
:;: In Appendix A we have shown that Ry = 4K, ,. Therefore, +C@G@ Yyt-m=1)} Y =Sa+yn (C.3)

& ]y - %
“‘ r. . where c
€ Poart {(Rueucsr -1 | ,

o « : a=[0, -+, 0, Gpgy -, ay).

,". . Next. introduce %

3 ‘

,:;'_ which is precisely (18). ’

i /

o c kot ‘T*
) APPENDIX Ze=E{y() - G@ W=k} Re= : (C.4) 9&
¢ ) h
i PROOF OF LEMMA 2 Fremnaet ”

. Note that we can write o

X and note that ?‘
kY , ‘
S Smor = Su m Lovdify v v Sh e
N vl o =E£{C(qg " "e()G(q "Wwu-k}=0, kznc+1 (C.5) g
A

Ym=E{C(q Nzmlt) - Clg )Glg  I¥t~nc-m—1)}, and. therefore. that

};‘ a=E{C(q-)G(qg Hy(}2, Re+a@ R+ +8pRi_ne=0, for k2nc+na.

» t
;E and It follows from (C.3) that a
: R [R'] °m'R:S;lwn”¢n+R:”"R:S;lxm-

4 me| = ’ ) \
“ o However. from (C.1) and (C.2) we have, 9

e om=E(0(0) - Gl@ )(t—nc—m=1)}. -ow
Therefore, . W

; : : 2

: P;:l’R:»IS;LRnol;[R:‘#mI . {[5]5;'[’ 0) Ot Rpa=Rocim+ (R Rucomeil a:.. 9
R | . -

S Um - R @ :

[ +d"[ _f ][\4:5»-‘. '”}[ ;"] -~ J

;n ®m 2Rocom+ O Recom-1+ "+ + 8y Rcom-ne=0, fOr m3na.

'

'\2 2P+ n[Om~ RIS Umlldm= RIS Ul (C.1) Hence. (C.2) reduces to (29) and the proof is completed. S
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OF AR PARAMETERS: A MONTE CARLO ANALYSIS OF FINITE-SAMPLE PROPERTIES

Petre Stoica, Benjamin Friedlander, and Torsten Soderstrom
ABSTRACT

A Monte Carlo analysis of the accuracy properties of least squares (LS),
Yule-Walker (YW), and the overdetermined Yule-Walker (OYW) methods for
estimating the parameters of autoregressive (AR) processes is presented.
Comparisons of the estimated finite-sample accuracy to the theoretical
asymptotic accuracy are included. It is shown that considerable differences
may occur in some cases. Choice of the number of equations in the YW system
of equations is discussed. Some remarks concerning the feasibility and
usefulness of an analytical study of the finite-sample accuracy properties are

alsoc included.
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1. INTRODUCTION

There are many parameter estimation methods in use today. For most of
them, an asymptotic accuracy theory is available. The interest in
establishing the accuracy properties of an estimation method is motivated by
at least the following: (i) interval estimation; (ii) hypothesis testing;
(iii) accuracy comparisons with other estimation methods; (iv) accuracy
optimization with respect to some "design variables" which are at the disposal
of the user. The asymptotic accuracy theory has often been used for solving
problems such as those listed above. However, in some cases, the asymptotic
theory is not applicable for the sample lengths encountered in practice. In
recent years, three main directions of research for overcoming this difficulty
have appeared:

(i) Analytical studies aimed at establishing the exact finite-sample
accuracy (moments or distribution) of the parameter estimators; this turned
out to be possible in some simple cases (a typical example being the LS
estimator of the first-order AR parameter). See [4, 5, 9, 10, 23].

(ii) Higher order approximations of the exact accuracy (moments or
distribution). This approach proved more flexible than the one above, yet
provided quite accurate approximations; see [1, 17-22].

(iii) Monte Carlo analysis of the finite-sampie accuracy properties.
This is a conceptually simple and general approach; see [5, 7, 8, 12, 15].

The aim of this paper is twofold: (i) To comment briefly on the three
general approaches mentioned above. This general discussion is included in

the next section. (ii) To consider a specific estimation problem for
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illustrating some of the main issues addressed in the general discussion.
More specifically, the problem of estimating the AR parameters is considered,

and a Monte Carlo analysis of the accuracy properties of three methods

R W

frequently used for AR parameter estimation, Least Squares (LS), Yule-Walker

(YW), and Overdetermined Yule-Walker (0OYW), is presented.

>

[t is perhaps worth remarking that most papers on small-sample properties

és have appeared in the econometric literature. A possible reason for this is
the fact that econometricians deal more often than engineers with short

iB samples (for example, containing around 50 data points). However, as the

o simulations of this paper will show, significant discrepancies between the

z‘ finite sample behavior and that predicted by the asymptotic theory may well

= appear even for sample lengths encountered in engineering applications.

d An outline of this paper is as follows. A general discussion on

ii approaches to the analysis of finite-sampie distributional properties of

parameter estimators is given in the next section. In Section 3 we briefly

._'.‘0_

v owr .
N .

describe the LS, YW, and OYW methods for estimating the AR parameters. Their

asymptotic accuracy properties are reviewed in Section 4, where it is also

shown that the asymptotic covariance matrix of the YW estimator is bound from

4 above by the covariance matrix of the OYW estimator. Section S contains the
~

* results of a Monte Carlo analysis. Finally, some concluding remarks are

:E presented in Section 6.

.

S

N 2. GENERAL DISCUSSION

o There are at least two points which are of interest when discussing the
o approaches mentioned above: feasibility and usefulness.

™

25 A
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Fcr many estimators currently in use it is a formidable if not impossible N
» task to establish the exact finite-sample properties of the distribution. In g
.% some simple cases, this task becomes feasible but the resulting exact o
3 Ny
expressions (for example, of the distribution moments) are so complicated that S
their usefuiness may be questioned (see [10] and its references where a fa
. o
Ly cumbersome formula is given for the finite-sample variance of the estimated '
R~
; parameter of a first-order AR process).
" -
Specifically, let us suppose that o 1is the unknown parameter vector -
%
- and éN its estimate obtained from an N-length sample. Introduce the &
1
e normalized covariance matrix of the estimation errors o
~' " R T 3
| PN(e) =N E{(QN—Q)(QN - 9) } . (1)
~ 1::
] K.‘-
) and let P_(e) denote the asymptotic covariance matrix d
g . &
P (e} = 1im PN(e) . (2) L
o N > ©
o
ig For many (consistent) estimators currently used in system identification, the 2
above 1imit exists under weak conditions. Furthermore, we have ;=
» 172 =B
. Py(e) = P (o) + O(L/NT'S) . (3)
.: 8
f In practice, when using Py(s) or P_(e) for purposes such as interval .
% estimation or hypothesis testing, we have to replace e by éN. Since ::
8y - o = O(L/NHEy
R)
3
we have
5 -
A
1
)" -
S o
~ 5805b 4 B
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PNKQN) = PN(Q) * O(l/Nl

) .

On the other hand, from (3),

P_(5y) = Py(e) *+ 0(L/N'/?)

Thus, there is apparently no guarantee that PN(QN) is a better estimate
of Py(e) than is P_(8y). The above discussion is valid for N
sufficiently large. For "small" N, the above calculations are no longer
valid. However, since Py(s) has a more complicated expression than
P.(e), it may still be true that replacement of e by QN may in some
cases lead to larger errors for PN(.) than for P_(-).

Next consider the problems of accuracy comparisons with other estimation
methods, and accuracy optimization with respect to some "design variables"
which are at the disposal of the user. For many estimation methods, there
exist asymptotic results for both the optimization of accuracy and for
compariscn with the accuracy achieved by other estimation methods. However,
these results may fail to apply for the sample lengths encountered in practice
and are thus of little use in such situations. For example, asymptotically
equivalent estimation methods have been shown to behave quite differently in
the finite-sample case (see [5] and Section 5 of this paper). A considerable
departure from asymptotic theory was reported in [15], where it was shown by
extensive Monte Carlo simulations that in some cases the ordinary LS estimator
may be better than the idealized Markov estimator in terms of both bias and

variance. Since P,{e) will in general have a complicated expression, it

is unlikely that analytical comparisons and optimizations of accuracy would be
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possible in the finite-sample case. However, what should be possible is fo
evaluate Py(e) numerically for different N and . This may serve to
identify sets in the parameter space and values of N for which one
estimation method is better than another, and also to provide guideliines for
“optimally" choosing the design variables defining the estimation method in
question. The Monte Carlo analysis approach addresses the two objectives
mentioned above. The Monte Carlo approach provides only an estimate of
pN(e) (or of the distribution function). The larger the number of
replications used in the Monte Carlo experiment, the better wili be this
estimate. Furthermore, a Monte Carlo analysis may be quite costly in terms of
the computer time involved. However, when an expression for PN(e) is not
available, the Monte Carlo analysis may be the only solution at hand. The

Monte Carlo analysis may also be the preferred approach when the evaluation of

the available expression for Py(e) reguires a very cumbersome algorithm

(see [3]). Extensive Monte Carlo analyses for evaluation of various
instrumental variable methods are given in [27,28]. :§
Finally, the development of higher order approximations for estimator -
accuracy seems to be the most promising one from a theoretical point of view. Fﬁ
Essentially, it follows the lines of the asymptotic analysis but takes into =
account also some higher order terms in (3). Truncating asymptotic series g
expansions after a small number of terms is frequently used to get improved -
approximations of parameter estimate distribution or of its moments. A
dgifferent approach to approximate analysis of finite-sample distribution was t
recently proposed in [20]. .
e
6868b 6 ;S
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In many situations, the development of approximations is a more feasible
" theoretical approach than the development of exact formulas. Also, it should
. lead to more manageable expressions for the covariance matrix of the
?I estimation errors, etc. We believe that this approach is a topic that
o warrants more attention. Some recent results on the finite-sample covariance
T structure of the sampled covariances of ARMA processes (see [2, 3]) might be
|
fC useful in this context (at least for studying the so-called correlation-based
i techniques). We may also remark that Monte Carlo simulation results may be
N o . . . , . . .
;} useful when deriving approximate finite-sample properties of the distribution
] by using the analytical approach of [20].
"
iﬁ [n the next section, we will consider three methods for estimating the AR
g
. parameters. fven if estimating the AR parameters is apparently one of the
2 simplest dynamic estimation problems, an exact finite-sample accuracy theory
ii does not seem to be available for any of the methods considered. An analysis
of the finite sample properties is beyond the scope of this paper. Instead,
n we resort to Monte Carlo analysis to show that:
(i) The asymptotic and finite-sample accuracy properties may be quite
'! different in some cases. (ii) The number of YW equations used for estimation
\ has a considerable influence on the accuracy. (Some guidelines for choosing
B that number are discussed.) (iii) The LS method performs in most cases
= better than the other two methods tested.
- \u 1
b )
N 3. ESTIMATION METHODS )
A Consider the following general AR process %
- y(t) * agy(t-1) + ...+ a y(t-n) = e(t), (4) )
: 4
~ L
i !
o
W 6868b 7




where {e(t)g is a sequence of independent and identically distributed random

variables with zero mean and variance denoted AZ, and the real

coefficients {a;} are such that the polynomial

A(z) =1+ 3,2 * ...t a, zn, (5)

has all its zeros outside the unit circle.

The AR model (4) is used in many applications in engineering,
aconometrics, biometrics, geophysics, etc. and a number of methods are
available for estimating its parameters. Of these, perhaps the most commonly

used ones are the following three.

3.1 The LS Method

Let o denote the vector of unknown parameter

T AY
o ={a; ... a,] . (6)

The LS estimate of e 1is defined as o

N

s=argmin C [y(t) - 2 (t) 6] (7) -~
e t=n+l -
where T,
: T '
(t) = [- y(t-1) .. = y(t-n)] (8) .
-
After some straightforward caiculations, (7) produces the result [29] T
\ N T .-l N .
sg=0 - AL I o) y(e) ] . (9)
t=n+l t=n+l ]
£368b 8 :
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The inverse in (9) exists at least for large N. '3

3.2 The YW Method b

e
- .

As can be easily seen from (4), the coefficients {ai} satisfy the

following equations:

(10)

n k-n =~

where

g X2 A
-5
x
+
[+Y)
—
-
~
]
—
+
Ll
L ]
+
[+ 1]
-
[
o
-
P
jv
—
-~

B
A e e o - &

re = Ely(t) y(t+)t

and where E{-} denotes expectation.

s
o (e ¥

Equations (10) are the so-called YW equations and the estimate obtained R

rapl

after replacing {rk} by K

ﬁi b
N

N—k N

T N A \ ~ (
¥ T =N ol y(t) y(t+k), r = T k=1, 2, ..., (11) {

in the first n equations of (10) is called the YW estimate. Thus, the YW

estimate of o is given by [27]

Xy :
y" A A A \
- Y'o 3 . . rn-l rl
. . A . 12
y : D Sy =~ | . (12) .
. o e A A N
n-1 * o L 3
'YJ J
o Numerically efficient algorithms for solving the linear system (12) exist. ,
E\ For example, the Levinson-Durbin algorithm solves (12) in O(nz) arithmetic .
“
»
{

-
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operations. The Toeplitz structure of the matrix in (12) makes the YW method
more efficient numerically than the LS method (9). (Equation (9) needs
approximately n/2 times more multiplications than (12).) The LS estimate

(9) and the YW estimate (12) are, however, asymptotically eguivalent. For
large N we have

\

% ‘svw“o(]%) . (13)

This result can be readily established.

3.3 The Qverdetermined YW Method

The OYW method is based on the recognition of the fact that the
Yule-Walker equations (10) involving high lag coefficients (re, k >n)
should be considered when estimating the parameters '{ai‘& of (4). Then,
instead of (12), one obtains an overdetermined system of equations which is to

be solved in a least-squares sense. The OYW estimate is thus given by

\

3>
4

. |
l o P ry g 2
1 . govw Sl I ! = min (14)
A A A I
el Tmen 'n Q

where ]Ix]{% = x'Qx, and Q is a positive definite weighting
matrix of dimension mxm. A numerically stable procedure for solving (14) is
the QR algorithm.

Intuitively, we expect that the additional equations in (14) will improve
the estimation accuracy, unless the sequence of covariances ry dies out

rapidly. In other words, fur narrowband processes (14) with a relatively
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large m should be preferred to (12), whiie for broad-band processes (12) may
be preferable. The choice of m is discussed in some more detail in Section
5. We generally set Q = I.

The above conjectures pertaining to the choice of m are supported by
practical experience with the method (see, for example, the simulation results
in Section 5). The practical experience contradicts once more the asymptotic
theory. See the next section where it is shown that (12) is asymptotically

more accurate than &gy, (14), for any m > n.

4. ASYMPTOTIC DISTRIBUTIONS

The LS estimate & g is asymptotically normally distributed with mean

equal to the true parameter vector e and covariance matrix given by (277,
xz T,ov1q-1
P =g [Elo(tr) @ (£){17° . (15)

In view of the equivalence (13), the YW estimate 3§w has the same
asymptotic distribution.

It follows from [24] that the OYW estimate &gy, is asymptotically
normally distributed with mean e and covariance matrix given by,

2

7= ﬁ_ (RTQR)‘IRTQSQR(RTQR)'l, (16)
where
o o+ Thal
R=1|: .
m=-1 rm—n ’
6868b
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; The relation between the covariance matrices P and P is of interest. The

following result holds.

=220 ol

2: Lemma. Consider the covariance matrices P and P defined by (15) and

(16), respectively. Then,
a 7

[

2P (17)

,:i‘. Proof. See the appendix.

The results in this section are valid for a "sufficiently large" N.

‘E What constitutes a sufficiently large N depends on the {aig parameters, N}
e {<
i:: or more precisely, on the location of the zeros of the polynomial A(z). This
L) “g
e is illustrated in the next section. ﬁ
-
N 5.  MONTE CARLO ANALYSIS ?
v In this section , we report the results obtained for the following two -
o second-order AR processes: o
[
o A
W S.: (1 - 0.9q'1 + 0.2q'2) y(t) = e(t), (18a) ‘*-Y
odl 1 L
h
v
‘-.f‘: ‘ |
J‘f )
) o
&_ -
38 x
[
o :
"y :
o™
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T and
i | g et
Sp: (1 -1.75q7" *+ 0.76q ) y(t) = e(t) . (18b)
k}:
g The poles of S; are located at 0.4 and 0.5; those of S, are equal to

0.8 and 0.95. For each system, 50 independent realizations of 2000 data

<<

points each have been generated. The noise sequence {e(t)} was obtained

. using the pseudo-random number generator NORMAL included in the statistical

v g
A

library of the FELIX/IRIS computer. NORMAL generates independent normal

variables with zero mean and unit variance. The initial values required to

start the recurrent calculations in (17) and (18) were simply set to zero.

g The first N samples of each realization, with N = 100, 300, 500, and
2000, have been used to estimate the system parameters. The LS, YW, and OYW
o)
) methods briefly described in Section 3 have been used to get parameter
i estimates. The OYW method has been applied for various values of m (see
(14)).
A
. Let a; denote the estimate of ay obtained from the i-th data
realization by using one of the three methods under consideration. The
ﬁ following quantities have been evaluated (for k =1, 2).
. .1 % A
2 Q= g ak, (mean value of ak),
%) 1=1
o —
3 ~ ¥ . \
a(ak) = , (percentage bias of a,),
. 3 k
’ var(3 ) = = E (3 -3 )2 (variance of 2, ) K
1‘ R 1'; IO v ce of a, ),

—
PRl 5
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and

I

5 MSE(Sk) = var(Sk) * (3 - ak]z, (mean square error of Sk).

i The results obtained in the different cases are displayed in Figures 1 through 53
. 6. The asymptotic values of var(a,) are also shown (in Figures 3 and 6). g;
: (The same symbols are used for the Monte Carlo and asymptotic results. The G
1 asymptotic results are the ones not connected by straight lines.) For iz
: G(Sk), the asymptotic value is zero. The following remarks can be made -
K regarding these results. g;
33 (1) For the LS method, asymptotic theory holds quite well for all the -
K sample lengths considered, for both Sl and for S,. For the YW and QYW Q;
v methods the situation is different. For Sl, asymptotic theory is Qf
? applicable for reasonably short sample lengths (e.g., for N = 300). However, he
! for 52, a good agreement between finite-sample and asymptotic behavior was éé
; found only for very long sample lengths (N = 2000). For short sample lengths,

j considerable differences between asymptotic theory and practical behavior E
| occurred, especially for the YW method. For sampie lengths of 100, 300, and -
; 500, the YW method is by far the least accurate of those tested, despite the f
:E fact that the asymptotic theory recommends it as being the best. For the OYW ?ﬁ
:: method with m = 20, 30, or 40, the differences beteen asymptotic theory and 2
i practical results are not so large as for the YW method (e.g., for m = 20 and §§§
;3 30, the estimated and asymptotic values of the variances are in agreement "
:3 for N > 300). It is interesting to note that for large m (e.g. m = 40}, E§
): the finite-sample variances may be'smaller than the corresponding asymptotic

.2 values. -
¢

: a
: 68680 14 >
“ e
’ -
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{2) The LS method outperforms the YW and OYW methods. [t gave the
smallest MSE's in almost ail the experiments performed. In most cases the LS
method is superior to the YW and OYW methods in terms of both bias and
variance of the parameter estimates. The superiority of the LS method over
the YW and OYW methods is clear in the case of 52, For $;, the LS
method and the YW method gave quite similar results.

The ranking of the QYW methods (m > na) appears to be in accordance
with the asymptotic theory only for Sl‘ For this system, m = 2
(corresponding to the YW method) gave the best results; when m was increased
beyond 2, the estimation accuracy deteriorated. For 52, the choice of m
to get "best" accuracy is no longer so clear. Here, the “"optimal"
finite-sampie value of m is certainly larger than the asymptotically optimal
value m = 2. This was also the conclusion of a large number of empirical
studies reported in the signal processing literature. It is difficult,
however, to give precise rules for choosing m. In loose terms, the closer
the system poles are to the unit circle, the larger should be m. For a given
system, the "optimal" value of m depends on N. The larger N the smaller

should be m (see, for example, Figure 4).

6.  CONCLUSIONS

We presented a Monte Carlo analysis of the accuracy properties of several
methods for estimating the parameters of an autoregressive process. The
differences between finite-sample accuracy and the theoretical asymptotic

accuracy were discussed. These results provide some useful insights into the

behavior of these estimators.
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APPENDIX: PROOF OF THE LEMMA

Let
s .2
h P =% (RT 571 R)'l (A.1)
o [t is straightforward to show that
3 55 A2 [Tl oTq  oTemlor ol oTe-1] Tory-1 oT
P-P=5 [(RQR) R'Q - (RISTR)TZRISTHT S [(RTR)™7 R'Q
~
5 - (RTs71Ry~1 RTs 19T (A.2)
- It follows that P > P.
;; To conclude the proof, we next show that p > P. This is equivalent to

showing that

>0

EY(t-l),

. y(t-n) y(t-n), ..., y(t-m)j}z 0
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COMPUTATION OF THE EXACT INFCRMATIOM MATRIX OF
GAUSSIAN TIME SERIES WITH STATIOMARY RANDOM COMPONENTS

Boaz Porat Benjamin Friedlander
Uept. of Electrical Engineering Systems Control Technology, Inc.
Technion, Israel Institute of 1801 Page Mil1l Road
Technology Palo Alto, CA 94304

Haifa 32000, Israel

ABSTRACT

The paper presents an algorithm for efficient recursive computation of
the Fisher information matrix of Gaussian time series whose random components
are stationary, and whose means and covariances are functions of a parametar
vector. The algorithm is first developed in a general framework and then
specialized to the case of autoregressive moving-average processes, with
nossible additive white noise. The asymptotic behavior of the algorithm is
explored and a termination ¢riterion is derived. Finally, the algorithm is
used to demonstrate the hehavior the exact Cramer-Rao bound for some APMA
processes, as a function of the number of data points. It is shown that for
processes with zeroes near the unit circle and short data records, the exact
Cramer-Rao bound differs dramatically from its common approximation based on
asymptotic theory.

inis work was supported by the Army PResearch Office under Contract
No. DAAG29-83-C-0027.
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i 1. INTROBUCTION
o ) :
L A general time series {y,} can be decomposed as
.*\'.'
Al
= X, +Mm {1)
! Yo T X T My
.
)\ : . v - . I3 ~.-
.. where {mt} is a deterministic sequence and {xt} is a zero-mean random g]
20 -

g sequence. In this paper we consider time series whose random components

0
.
-t X
. v -’

{xt} are stationary Gaussian processes. The joint probability density of N

IS

> consecutive data points, say {y, Yy» +ves Yyopt o is given by .
o ‘i
Ny fly) = (20) 2 ger /17 2exp(- Hy-m 'R y-nl, (2)

e m y-m

A}
-

—~

[

& where g
RS

‘ ¥ = bygoyye -ees -V.‘J-le b= Imy, my s "‘N-I]T’ 3
:) and R is a Toeplitz matrix whose elements are the covariances of {Xt} , 1.e. é}
X
’ R); y = riy = Elygqy veh s 0 thd e Nl (3) hN
'L; we now specialize our discussion to the case where the sequences .
iéf {mo, ml, ...} and {ro, rl, ... )} are functions of an M-dimensional vector :ﬁ
:F\ 3 . Such time series are said to be parametric, and ¢ is called the

‘:?_ parameter vector. :3

.
a0
o Nt T

Parametries Gaussian time series are very common in many statistical and

3,7,
LS
I

LE .

engineering applications. As examples we mention autoregressive (AR) and

autoregressive moving-average (APMA) processes [11. A problem of considerable
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interest in parametric time series analysis is that of estimating the
parameter vector 9§ from a set of N consecutive measurements. As is well
known, the variance of any unbiased estimate 6 is bounded from below by the

inverse of the Fisher information matrix, i.e.,

203} = 8 ——m-Var{3) > JM3) , (4)

where

alogfly) 31°9f(l)l
38 38, ’

ICN , =t 1<k, 2 <M. (5)
For Gaussian time series, the Fisher information matrix is given by the

expression

am(a) sm(9)
(90, =+ tr(R7Lte) é‘;—e‘-‘-e(la'l(a) 3§§i’}+ & 1o )[—;

3
i ’

£

(6)

where tr{.} denotes the trace operator. While formula (6) is known, its
proof does not appear to be readily available in the literature. We,
therefore, provide a proof of this formula in Appendix A.

When the mean vector g_is zero (or is independent of 2 ), and when the

v

number of data points is sufficiently large, the information matrix can be

approximated by Whittle's asymptotic formula [2]
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where o(w) is the power spectral density function,

plw) = r + 2

0 r cos ko . (8)
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k=1

The use of Whittle's asymptotic formula is quite common in time series
analysis. In particular, for ARMA processes this formula yields a relatively
simple closed-form expression - see e.g. [1, p. 240-242]. However, tne
quality of this approximation (7) depends heavily on the nature of the process
and on the number of data points, and may yield highly erroneous results if M
is not sufficiently large.

Direct computation of (6) (assuming that the sequences {mo, m cee}s

{ro, rl ,e++ } and their partial derivatives are known) requires a number of
operations proportional to N3 . In some cases it is desired to compute the
values of J{g) for all 1< n < N, in which case the total number of
operations is proportional to N* . This is probably one of the reasons why
the exact formula (6) is not widely applied.

In this paper we derive an algorithm for recursive computation of the
Fisher information matrix. The algorithm computes the information matrices
for a11 1 < n< N in a number of operations proportional to NZ . Thus, the
algorithm is considerably more efficient than the direct use of formula (6).
The algorithm is based on the well-known Levinson-Durbin algorithm for
computing the orthogonal polynomials of a Toeplitz matrix.

The general algorithm is derived in section 2 of the paper. 1In section 3
we specialize it to some common rational parametric models. In section 4 we
discuss the asymptotic behavior of the algorithm and give termination
criteria. In section 5 we illustrate the use of the algorithm by some

examples. 1t is shown that the exact CRB differs dramatically from the
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asymptotic CR8 in some cases.

The relative computational efficiency of the alaorithm described here
makes it possible to use the exact CRB for performance evaluation of ARMA
estimation algorithms. The exact CRB provides a very useful reference point
for studying and comparing various estimation procedures proposed in the
1§ terature. The fact that in some practical examples the exact CR8 differs
considerably from the asymptotic CRB motivates the use of the algorithm

proposed here, rather than using the somewhat simpler asymptotic formulas.
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2. THE ALGORITHA

Let the partial derivatives of {rn} and {mn} be denoted by

@
-3
—
@
—
@
3
2

;1 ckeM (9)

3
"

1]
[ =
=]
>
ar
(4]
”»x

The values of {(r ,m, s , U : 0 <nc<N-l, 1<k <M} are assumed td
n’ n’ Tn,k n,k

be available to the algorithm.

Let P’ En,k and 3n,k denote the vectors
- T ) - T
2p * [rl, Tos oees rn] ok T [sl,k’ Sz,k' vees sn,k]
T
va ok = Cug o Up ke oo Unid
Let Rn and Sn " be the (n+l} x {n+l) Toeplitz matrices
(Rn)i,j = ri-j ; (Sn,k)i,j = Si-j,k ; 0<ci,jen. (10)
Let 3, pe the (n+l)-dimensional vector
1 31
a = . (11)
- 1

Rn-1 2q bon
The components of a, are the coefficients of the n-th orthogonal (so-called

Levinson-Szegs polynomial of the sequence (ry, ry, ...} [31,041.

Let T denote the permutation matrix
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b

=

-l
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o

(12)

The dimension of 1 will be always clear from the context. Aiso, for any

vector Vv we denote

=1v, (13)

1<

i.e., v is obtained from v by reversing the order of the components of the

vector. Note the following property of the matrices Rn and Sn K :
1 1 = 1 7 = 1
I Rn I Rn s 1 Sn,k I Sn,k . (14)
Let us partition the matrix RnAin two ways, as follows
T -
Rn = = -7 .
in Rn-l } n gn r‘o } 1 (15)
L
1 n n 1

Using the well known partitioned matrix inversion formula [5, pp. 1, we get

o 0 R7Z, 0
-1, 1T - - T
Rn R R P +6ta al (16)
o &} 0 0

where
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T ,-1 =T .-l -

5 * 0~ 2n Rp12n T Tg 7 £q Rpo1en - (17)

Consider now the (k,z)-th element of the Fisher information matrix Jn+1(0)

corresponding to the n+l measurements {(Ygs Yysee¥p} + Using (6) and (16),

we can expand this element as follows:

. 1 1 1 T ,-1

0 0 0 0
tri S Sy L}
‘ -1 n,k -1 |°n,2!
0 Rn-l 0 Rn-l
1 1 T 0 °
* 7 8y e, o sn,k -1 sn,z}
0 R
n-1
! 0 0
- T
t 78t o gl |nk @ 2 Syl
n-1
1 -2 T T
Y780 trleq a5 Sk 2 an Sy,
8
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% el L esthy e e i
S —n,k0 0 a2 n2n,k 20 2n Yn,g {

‘-"‘-- .‘r_

¥ AT o 0
) = DaleM]y o * 8572, Shx o gl Sn, 3n
- n-1
) A
RS 4‘\
n:’
W12 T T LT o eT )
& 7 %n 20 °n,kn 2”0,z 20 7 S 2n,kEh 20 2n,g o
i)
~ .
"ot -
: AT -1 1 -2 7 T
RS = Cntely, * 80 a0 Snk Rn Sn,p 20 7 7 50 2n Snyk 2 20 Sn,edn ]
R Ll T T 3
" S0 Ynk 2n %h Ynyp (18) .’
B Let us introduce following auxiliary variables. )
Y -.
N
B ]
= \]
- 2n,k Sn,k Sq (19a) \
.'_'\ |
: . =rlg = 7l (19b) :
s *n,k n >n,k 2n nn,k * <
T _ T ’
| fak ™ 20 Sk 20 7 80 dnk 0 (19¢)
...' gn'k * 24 ¥k (19d) .
.4
A
<
>
}‘.
L%t

B RN ¢ 7. (R RO N RN AL SRR
’ ' L, ({‘. ,“'\.“h\(\ﬁ{i—":\ \ "W-‘\‘;-\ -‘
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AL X Rl

X i
o
§ Substituting in (18) we get the desired update formula for Jn+1(a): &
-
! 17 1 -2 -1 b3
i { n+1")1k 2 [J (8)] ﬂﬂ "7 °n fn,k fn,z+ ®n 9 ,k%n,0 * ¢3
P
4
- gy}
' 18
‘i' (20) &:
)
i
T0 use this formula in a recursive algorithm, we need updating recursions for 5;
. E3 Gn’ aﬂ’k and én,k . The variables a and Gn can be update using the :
:1 Levinson-Durbin recursions. 2
¢
P 9
»

a &

¢ I‘E-n-l r" ~

v ﬁq = 0 - cn L; ’ (21) !3
-1

'f; L

A Y
W )

-

‘ 2

o> =z § -

RS Gn On-l(l Cn) Iy (22) o
3 »
Y "
) . , , X

; where ¢, is the n-th order parzial correlation (also called reflection e
T, coefficient) Lk
"’ » ‘
A - - i
0\ ¢, = n 1 Sn.1 2n ¢ (23) |
& —F}
R L
b Using (21) in (19a), we get the following update formula for LN

-:" ’ _}:
o £
‘oS

o 81 0 1
2N n =S a, =S -c_S . w
2 -n,k n,k =n nK 4 n “n,k
N Zn-1 ;
$ :\ \;n‘
B

> :
¥ 4
o

> 10
o j
;;."'\’1- N . * f\\r w, ?‘i :&; ;\ ~ ,‘.:: : ::,.r .- ” ::,_- 7 T £ J‘-"':: ::.{-’ ,_-_‘ Lt -
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Similarly we get for -E-n,k ’

dn-1,k I,k
- = P-l = R-l{ - C -
k" Tndak T Ta lodp " Bpolk
-1 n
R 0 —ﬂ-l,k
[ n-1 -1 -7
= + 6§ "a [+
L 0 0 n - 'ﬂ} dn,k
0 0 1 T dn,k
-cnil . R"l + 5n g, e, } -
n-1 Eﬂ-l,k
in-1,k 0 -1{-
= - C - + e S o]
n n,k%n (&n
0 Snel,k

(26)




where s
o
) n

o - ' ﬂ-l,k
- e .= ar . (27) ¥
". n,k <n dn,k J:i
s
. To summarize, the algorithm consists of formulas (23), (25), (22), (21), (27), E
v Ra
§ (24), (26), (19¢), (19d) and (18) in the given order. For convenience, we _
4 have included a summary of the algorithm in appendix 8, in a form readily %:
L)

adaptable for programming. The total operation count for one update is

_'_ n(M2 + &M+ 4) + (M2 + M + 1) multiply/divide operations, and o
kY n(M2 +6M+4) + (M 2, 6 M + 3) add/subtract operations. Thus, the total j:
‘-

C operation count for computing {J (8), 1 < n < N} is %.(Mz + 6 M + 4N >
. + 1 (M2 + 104 + 6)N multiply/divide oeprations, and M2 + 6 M + aN? 3
- L
< + ’3-(7&12 + 18 M + 10)N add/subtract operations. This does not include the

&1

“ - * K3 ‘

computation of {rn, Sn,k’ m.s un,k} , which depends on the specific 5

:-' parametric model. :_1
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3. RATIONAL PARAMETRIC TIME SERIES

in this section we present an algorithm for computing the covariances of
rational parametric models, and their partial derivatives. We consider the

following general rational model:

where {vt} is white Gaussian noise with zero mean and variance 33 , and

z, is a (p,q) ARMA process,

r

1)
ne--ro

+ u

g
1 akzt-k ¢ + ﬁ bkut-k’ . (28)

t K k=1

where {ut} is white Gaussian noise with zero mean and variance qﬁ . The

random processes (U} and {Vy} are assumed to be uncorrelated. The parameter

vector is

3 = [aﬁ, 3, ey 2, Bys vens bq, qu‘ ; M=p+g+2. (30)

The model defined by (28), (29) includes many cormon rational models as
special cases. The case 03 = 0, q = 0 corresponds to a pure AR process,
while the case °$ 20 , q=0 corresponds to an AR processes in additive
white noise. The case p = Q, cs = 0 corresponds to a pure MA process, while
the case p = 0, q # 0 corresponds to an ARMA process. Note that in ceneral,
the additive noise Ve is redundant whenever gq  p , because then it can be
absorbed in zt by a proper modification of the parameter (bk} .

The covariances of {yy} can be computed as follows. Let us introduce

the auxiliary AR process

ISRVAVIN R TS S APEN B S M ~

P S




3 D
S
¥ I . (31)
' wt 2 - k:l akwt-k u, cu . 2 “
el
X
) Let {yn} denote the covariance sequence of the process (wt} . The .
% first p+l elements of this sequence can be obtained by solving the equations v
g (51 3
¢ \ 1 4T T o
3 (Al‘*r\z)[yp, sees Yy -2—70] ={0...0 11, (32)
0y e
» o
™ where
¢ -
- N
9 1. 3 . ap 0 . ap P
Ay ot s Ay e . . (33) -
- L 0 . ?1 | 1 =
'l
= [N
: The higher order elements of the sequence {yn} can be computed using the e
o5 recursion
0" -
by
‘ = g a ; > 4)
- Yh T Koy Knek * 7P (3 4
v - ‘:—.‘.
! 2
The covariances of {yt} are related to those of (wt} via -
X
.. 2 ? g 5.5 103 3 =0 (35) 2
r z2 g . L :9 Y 3 + 3
U 420 4s0 VY In-1+] to ; otherwise - ‘o
" :l‘:
-’ The partial derivatives of the covariances can be similarly computed. _!_3
N -
-". N
b '-
s 14 -~
»
N »?
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Jifferentiating (32) with respect to 3 we get

ay
A (P M1 ¥ i T
(“1+A2)Laak , , aak 73 k] [Yp-k""’YO"'°’YkJ . (36)

8y solving these equations for each 1 < k < p , we get

ey EEE » 1 < k<pl (note that Ay A, needs to be inverted only
|4

3d
K
once). Differentiating (34) with respect to a, we get
Al 4 Y hi
— . Y R - - . (37)
L ¥ 33— " Ypn-
aak is1 1 ,ak n-k
Finally,
ar q q a3y )
aan = 03 Z ) bj J ': kel (38a)
k i=0 J:O Kk
M, o2 9
By, U5 B0 pekei | * Y Inek-i ]! (38b)
= Lo (38c)
? =) . b.y e ¢
a0l 130 j50 O{25Y [n-i+j
3Yn ‘ 1 ; n=0
" (384)
ER) | 0 ; otnerwise

Equations (32), (34), (35), (36), (37), (38) provide an algorithm for

computing the covarfances and their partial derivatives for the ARMA plus

noise model. i
3
1
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N 4. ASYMPTOTIC BEHAVIOR OF THE ALGCRITHA
o )
! In this section we l1imit ourselves %o time series with zero meanss. -t
?j Furthermore, we assume that (y,} has nonzero innovation variance 32 . 8y
S - -
1 . ) . . . . .
: whittle's formula (7), the information matrix Jn(e) is asymptotically -
) proportional to n. We therefore expect that the increment -
. -1 T 1 2 . . . . :f
S 50 Jn,kgn,z -7 4 fn,k fn,z appearing in the update formula (20) will
:2 converge to a constant value as n goes to infinity. Indeed, recall that -
R
. . ® -
o= lime =g 1 (1) . (39)
= Nace i=1 o
. 7
o rence, ;j
4
£, iy
" L) @ r c.
\ " 2 2 0 <.
' ¥ ¢y <= ¥ log(l-c:) = log <o, {40) -
{ §=1 ! i=1 ! ;?
L -.
Y s’ﬂ
Therefore, -
L]
D) . B
L, -
¥ - '-";
R im 5 clao. (41)
S Naw i=n+] -~
” re
¥ 1t is easy to show that due to {40) the variables 3. fn ‘ and )
.- T o >
’3: Ak 5n,e converge to constant values as N + = ., Thus, for large enough n, ;j
i Jn(9) becomes approximately linear in n. This means that for some ng., -
:\-, T
{-:' ] ! ' + - 3 c LT
N un\e) no(e) (n no) J(e) LR (42)
' e
ji: where J(8) is a constant matrix. The approximate relationship (42) can be :j
:iﬁ used to terminate the information updating algorithm, in the following
'\4' ,_-1'
b manner. Suppose we can find some n0 such that hi

{




B

oo
i=n0+1

< e << 1, (43)

- P

o where ¢ is determined by the desired degree of accuracy. Then we can stop
‘ h the algorithm at n=n0 , take Jls) as the last computed increment of
Jp(3) , and extrapolete J (s) for all n > ny using (42). The prcblem is, of

course, to determine n, SO as to guarantee (43). One way of doing this is to

‘l\,

ii compute a moving sum of squared partial correlations, say

-~

.."_ n 2

‘ Kn = 7 5 » (44)
- i=n-n,

!"“

&

where n , is fixed. Then we can choose ny as the first value of n feor

Which Kn < ¢ . If the sequence (¢} is sufficiently regular, this criterion

o

nt
is a reasonable approximation of (43).

|
”

ror ARMA processes, the value of n0 can be determined hy the ARMA
parameters, and there is no need to actually test the partial conrrelations.

In fact, a consecutive estimate of n0 is provided by the following lemma.

Lemma:

.- Let ¢b(z)/al{z) be the transfer function of a {p,q) ARMA process, and
assume that all the roots of b(z), {Bk, 1<k <q}y , are inside the unit

circle. Let n, be an integer such that

1

2,
>xT10

=]

and let

Ny = P+ q(nl-l) . (46)
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?Proof:

Let qn(z) be the n-th order Levinscn-SzegE polynomial of the given

s process (i.e., the polynomial whose coefficients are the components of

A

¥

. 2,) As is well known, . (z) minimizes the prediction error variance among

all polynomials of degree n, and the minimum prediction error variance is

35 p ¢ Therefore,

X Jw Juyi2 . . 42
g L :%._ jr“ 'Qn(e )c.b(e ) dw<l'— J’" R(er)gb(eJm) 4w , (47)
X "L ated) T ale’®)
-4
,igt for any n-th degree polynomial i(z) . Let us deinfe the following
‘ polynomial:
%
L~ls
W q -1 nl"l '(nl‘l)
3 Aol2d = alz) « n {leg 2™+ Lo+ " 2 ). (48)
P k=]
e
G 8y (46), the degree of i.(z) is n_ . Hence by (47),
r} 0 0
" Jw Jwy 2
R s 1 ki lOAo(e )b(e ) 02 q "jw n1
¢ <35 | 3 =35 f n (1-(g e ™)
4 A S . i}
}:Cf
-t
\‘- -- n q n
b < sup o |1 (1 (e ) L = P n (els | 12 (49)
N 1wl k=1 k=]
A
A5
:~ﬂ: Hence, by (45),
s
W&
Ky
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109—2—< ) 2‘09(1.*"5‘(‘ }: lﬁkl . (50)
g k= k=1
Firally,
a0 ® 6n
) c% < v - 1og(1-c ) = log _7Q (51)
f=n0+1 i=n0+l

In summary, any Ny that satisfies (45), (48) can be used as a termination
point for the algorithm. Note that "y is essentially determined by the

zero(es) using the largest magnitude. The denominator polynomial has little
effect on n0 , except when p >> q or when all the zeroces of b(z) have small
magnitudes. For pure AR processes, ci = 0 for all i > p., The relationship
{42) then holds exactly for Ny = p*l . This fact was also proven in [6]
using different arguments. For ARMA processes having zeroes near the unit
circle, partial correlations may converge to zero very slowly. Therefore, for

such processes, the Fisher information matrix reaches itsasymptotic

approximation (7) only at very large values of n.
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5. NUMERICAL EXAMPLES
In this section we illustrate <the behavior of the Fisher information
matrix of ARMA prccesses by some examples. Rather than considering the

information matrix itself, we consider the foliowing quantities:

(i) The dfagonal elements of J;I(a) ; these are the Cramer-Rao bounds on

the respective components of the parameter vector 9

{it) The Cramer-Rao bound for unbiased estimates of the logarithm of the

spectral density. this is giver by (7]

CRB{Togs(w)3 = D (w)37H(3)0Mu), (52)
where
0T (a) = by (2ala) | sl (53)

Example #1:

In this example we consider an ARMA processof order (2,2), with a pair of

conjugate poles and a pair of conjugate zeroces. Both the poles and the zeroes

3

have magnitudes (0.95)1/2 , and the phase angles are :45° for the poles and

R

£135° for the zerces. The AMA transfer function is

b(z) _ 1+1.378271+0.95272
32T~ 1 .3782740.95272

n
¥
pras-as A | $o.0~g

Figure la shows the CRB's of the parameters 3, 3, bl’ b2 as a functicn of

n. The CRB's are in d3 and the n axis is in log scale, so that tne asymptotic

[ > ¥ ¥ ]
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approximations appear as straight lines. As can be seen, the discrepancy

between the exact bounds and the asymototic approximations is very large wnen
the number of data points is small, especially for the numerator parameters.
Only at about n « 500 do the exact bounds converge to their asymptotic
approximations. Figures 1lb and lc¢ show the exact and asymptotic bounds on the
log spectrum (+l standard deviation) for 50 data points. As can be seen, the
behavior of the bound in the vicinity of the pole is similar in both

figures. However, its behavior in the vicinity of the zero is considerably

different: the asymptotic approximation is far too optimistic.

txanple #2:
This example is similar to the previous one, except that the poles were
moved to phase angles of +70° and the zeroes were moved to phase angles of

#110°. The corresponding transfer function is

b(z) _ 1+0.667271+0.9522

) (55)
a(zl ~ 12076672°1+0.952°2

Figure 2a shows the bounds on the parameters, Figure 2b shows %he exact bounds

on the spectrum, and Figure 2c depicts the approximate bounds on *he %

spectrum. Note the difference in the bound of compared to the previous

exanple.

Exampie #3:
Here we moved the pole and the zerc even clioser t0 each other. The poles

have phase angles of +85° and the zeroes have phase angles of :85°. The

corresponding transfer function is

T R T Nt R R T R L S Ry A Nty \','-.:_‘-:
PT et U0 g {1 T R R L A G O R R LR L SRR
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140.17271+0.95272
1-0.17z"+0.9527¢

b(z)
alz)

(56)

The bounds are shown in Figures 3a, 3b, 3¢c. Note the dramatic change in
the bounds of al and az compared to the previous examples, for small values

of n,

Example #4:
For this and the subsequent examples the model was a sum of two

uncorrelated narrowband processes and white noise. Such a process has a

spectral density function

4 2 . Ju,_ =jw
2.2 o

p(J) = ” Y LK ~53 .
1 1+dpicos™2=f, + p? 'ZpiCOSZRfi(l+p§)(eJd+e J“)+;>$(e“"°"+e 23”) v

i

HE-I DN

(57)

In this example we chose £y =Py © 0.99, f1 = 0.2H2, fz = 0.225 Hz,
2

El = Ez =1, a, = 2 . Thus, the SMR is -3d8 for each of the two narrowband

processes. The equivalent ARMA description of this process is

cb(z) . 1.5856(1-0.87062"1+1.9194272-0,7610273+0. 764124
Azl 1.0.921727"+2.150227°-0.903627+0.96062 "

. (58)

The number of data points was chosen to be n=50. Figures 4a and 4b show the
exact and the apprcximate bounds on the spectrum. Note that the peaks of the
lower bound are lower than the dip of the upper bounds. This means that with
high probability the two narrowband processes cannot be resolved by any
unbiased estimator of the spectrum. This phenomenon cannot be predicted by

the asymptotic approximation, but only by the exact bcund.
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Example 35:

' e
[0 49

This example is similar to the previcus one, except that the white noise
'. variance was increased to 4 (i.e., the SNR is -6 dB). The eaquivalent ARMA

description of this process is

o b(z) _ 2.1630(1-0. 8863:'1 + 1 988322 o soszz'3+o 82122‘4)

atzy (59)
!g 1-0.92172" +2.15022-0.93062">+0.9606z2 "
;g The exact and approximate spectral bounds are shown in Figures Sa and 5b, for
x n=50. As we see, the peaks of the Jower bounds are much below the dip of the
IR upper bound, is that the two processes are not 1ikely to be resolved at all.
20
EE Example #6:
This example is similar to the two previous ones, except that 03 =8,
.{A
o j.e., the SNR is -9 dB. The equivalent ARMA description of this process is
< -1 -2 -3 4
'i ablz) _ 2.9798(1- 0 8979z “+2. 04071 -0. 83532 +0 865527 ) (60)
Nz 0.921727 " +2.150227°-0.90362 " ~+0.96062"
-;{
b Figures 6a and &b show the exact and the asymptotic spectral bounds. Here
i! even the asymptotic approximation indicates that the two processes cannot be
resolved. However, the exact bound indicates that with high probability none
%; of processes can be detected.
gf Example 27:
&4 This example is similar to example #4, except that fz was changed to
s -

0.2125 Hz. The equivalent ARMA description of this process is

ob(z) _ 1.5723(1-1. 0192z'1+2 0215z'2 0. 8985:'3+0 7771:“)
A 1.07382" +2.24382°-1.05292 >+0.96062

23
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[- Figures 7a and 7b show the exact and the asymptotic spectral bounds. The two
q narrcwpand processes are evidently indistinguishable, but the approximate

o

2 bound fails to indicate this.

t‘

. Example 48:

}

; This example is similar to examples 44 and #7, except that f2 was

b changed to 0.25 Hz. The equivalent ARMA description of this process is

I

3 ablz) _ 1.5943(1-0.5763z"1+1.72952-2.0.501123+0.75582™%) (62)

. 2T 0.61192 1+1.96032 2-0.59972 °+0.96062 "

: Figures 3a and 8b show the exact and the asymptotic spectral bounds. Now %he
N two frequencies are sufficiently for apart, so that the two bounds are similar
i

:: and both indicate that the two can be easily resolved.
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6. O0ISCYSSICN

We presented an algorithm for computing the exact Fisher information
matrix of parametric Gaussian time saries whose random components are
stationary. The algorithm is computationally efficient, requiring a nurmper of
operations proportional to NZ for computing the matrices

{Jn(a), 1 <ncH} . The Cramer-Rao bound for unbiased estimates of the

parameters is simply the inverse of the information matrix.

The algorithm was specialized to the case of ARMA processes with additive
Anite noise, and closed form expressions were derived for the covariances and

their partial derivatives. Some common nonstationary time series can be
similarly handled, such as sums of sinusoids in white or colorad noise,

rational impulse responses in white or colored noise, etc.

Examination of the exact information matrix of ARMA procasses reveals an
interesting fact. As is well known, the asymptotic information matrix of ARMA
processes is symmetric in the numerator and denominator parameters. 1In other
words, interchanging the numerator and the denominatir polynomials leaves the
information matrix unchanged, excapt for row and column permutations
[1, pp. 240]. HMHowever, the exact information matrix does not share this
symmetry property. See for example the difference between the denominator and
the numerator parameters in Figure la, w~hen the number of data is small. This
observation offers a partial explanation to the well known fact that with a
small number of data points it is much more difficult to accurately estimate
zeroes than poles.

wWe finally note that the Cramer-Rao bound for short data records is not
necessarily tight, i.e., efficient ARMA algorithms may not exist. However,
the CRB still provides a lower bound on the performance of any given

algorithm, We should stress that the bound applies to unbiased estimates
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. only. 'While there is no evidence that there exist unbiased ARMA estimation
o methods,. most 2xisting algorithms are designated to te apprcximately
)
L) . . . : - . . . -
M ynbiased. For such algorithms, the inverse of the information matrix offers a
:{ reasonable measure of achievable performance.
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APPENDIX A: PROOF OF THE INFOMRATION MATRIX SORMULA
The algorithm of the joint density function fly) given in (2) is
log fly) = - N log 21 - L 109 det R(3) - Sy-m(5)1TR"(9) {y-m(5)] (A1)
bl r4 z DA P AL

Differentiation with respect to 8y yields

3V0gf(y) ) ) ]
camle) ¢
Tl R (3){y-m(s)] . (A.2)

. R am(s) ¢+ _ sm(3)
[3(3)], == 3 tr{R7H(9) 238D prrpml(g)3RO), | 7= P Tl 020
K,2 T t 3% L 3:32' i ¢ 3-':k ‘ - 9%, s

!

.

To evaluate the last term let us denote

X =y -ma) 5 A=RYe) BRI p-ligy gL geliy) RO -1y (agy

aek 532‘
Then
E{xTAx xTB b= g[ ¥ XA x.x 3 x 1 = § ArsB  E{X X.x x|}
LB ARNAR Sl i23,m,n 1 1373 M mn n! %5 m,n 13%mn=1 % %5 %%
= 7 A..B (R,.R__+R, R, «R,R.)
L
%3 .m0 ij-mn 1§ “mn im jn in"jm

ij 3n"nm mi ij jm mn ni

(7 A, R, J«(F B R + A;.R. 8 R+ § A..R. B R
A Je ( L . ) L L
3 115 m,n mn - mn i3,m,n i3

tPLARY o tr(8R} + 2tr{ARSR}

= trR 7o) BOL el RO) oy pepeliy) BRI ool R(s),
8 ! 39 35 )
(5.5)
29
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+ Ieitgfg(a)]TR'l(a)[1-gﬁa)]3%é%l '1(9)[Z-m(e)]TR"(e)aR(a) R'l(e)[yfg(e)]}.
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into {A.3) we finally get

am(3) am(s)

aek aak : . aak - - 98, -
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APPENDIX B: SUMMARY OF THE ALGCRITHM
inputs:
N: number of data points
{ro,...,rN_l}: covariances of the given orocess

{ . "y r i i
‘So,k’ ’SN-l,k’ 1<k ey partial derivatives of the covariances

{ seees . My i derivati , vect
\uo’k uN-l,k <k ¢y partial derivatives of the mean vec*or

Initjalization:

"0 = SO,k y k=l, .00 M,

50,k SO,k/rO » K=1,....M;

1 2
J1k,2 =7 S0,k%,./T0 sk, 2= 1,000 M;

Do for n=1,...,M-1:

n-1
c = ( 2 a,’” .)/6 Y
igo 1 f'l-‘l
n-1
= .S, 2l,ece )
Q, §=0 31 nei ,k ,» Kk l’ M

= =1
nn"( dk ’ k - ,\4
t ey - Ca , 120,...,05
30

e e R il - N i B3

Pu——. PR - .




-R16S 649

UNCLASSIFIED

PARAMETRIC TECHNIQUES FD! HULT!CHRNNEL SIGNAL

PROCESSING(U) SYSTEMS CONTROL T OLOGY INC PALO ALTO
CA_ B FRIEDLANDER OCT 85 5498- 07 RRO -197087. 19-EL
DAAG29-83-C-8827 F/G 12/1

N I O -

n




tr 0 E
flz2
lz2

i
22 s e

FFEFEEE R

EEEE

—
.
—
Er

r

113

.
ro)

MICROCOPY RESOLUTION TEST CHART
NANGNAL BURFAU OF STANDARDS 1963 A

33
YA

” i
B

!

&

N
v

S
e,

2

e

e
Be iy

‘.F
«
P

Y&
'v'f‘rfn
P

5

7]
J‘JJ -+

I.

5 e,

e
e

W XN .
A.
(R

BEAE
Fonra

-
2 -
%

» 4‘.‘

‘g\.‘

X

-
AR
="

L%
g
T

R A R A e 2t LS AL S Tl S N S A N N
. N, . W N N
ot o AR CR S
A o o N Bl n

. I ~ a A% | e S 1% TS ' L. M % % 3% ) ’h\),
G 4 QT B A S R S S g (R

) Laas



[ ‘T
e .
"n' E£
i %y Y y B0,
N n
Y ) 21,00 4;
9 f T Ly MK v Kb
B!
&N
y ﬂ t1 = 1‘7,1( - Cnn-i,k , i=0,...,n;
;g . k=1,... M
f 2 Nk t1 , 1=0,..,n;
S - - R = .
2:!‘ t‘l = E‘i,k 's'l-i,k + ek(an_i-Cai)/o , 1 =0,i0.,n; o
S s . . ,“
‘ & = 1'-'0’ N 3
i E Six Y ’
S
S ¢ -7 k=, oo M
",-‘ ‘\i-: K = 1[_=0 Giﬂi,k s =i, > ’
n
m. 9 32 a u Y k:li ’M ’
;5 k 429 n-1 1.k
; = + ? ns 35,078 Lff /52+g g./3 kK, 2=1,... .1
" “n+l,k,2 n,K,2 \1;0 9,k%1,2 Z 'k 2 k72 e ety
]
‘-_\. =)
R Comments:
{i .
;;f ii {i) The vector g , Nes By and the scalar s are overwritten at each step
. by the new values. This helps keeps storage requirements
‘ik; . proportioral to N, rather than M2, The temporary storage vector
iyt
ASNDY t is used in updating the vectors 3, n , I, .
, } N = = ok o=k
[; {ii) The Fisher information matrix is not overwritien at each step;
~ however, the algorithm can be easily modified by letting the new
~ value of overwrite the old value.

{(1i1) The update of L is split into two steps. First dk is added %o the

:r. F"’:.’ ’\".:\‘-?3:"1&-' ry . 

o ﬁf n-th component, and the partial result is used to compute ek (cf.
,:;j : (27)). Then the updating of L is completed.
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Fiqure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Fiqure 8:

FIGURE CAPTIONS

Example 1-- a) The asymptotic and exact Cramer-Rao bounds for
the ARMA parameter estimates, b) the exact Cramer-Rao bound for
the spectrum, c) the asymptotic Cramer-Rao bound for the log
spectrum

Example 2-- a) The asymptotic and exact Cramer-Rao bounds for
the ARMA parameter estimates, b) the exact Cramer-Rao bound for
the spectrum, c) the asymptotic Cramer-Rao bound for the log
spectrum

Example 3-- a) The asymptotic and exact Cramer-Rao bounds for
the ARMA parameter estimates, b) the exact Cramer-Rao bound for
the spectrum, c) the asymptotic Cramer-Rao bound for the log
spectrum

Example 4-- a) the exact Cramer Rao bound for the log spectrum,
b) the asymptotic Cramer-Rao bound for the log spectrum

Example 5-- a) the exact Cramer Rao bound for the log spectrum,
b) the asymptotic Cramer-Rao bound for the log spectrum

Example 6-- a) the exact Cramer Rao bound for the log spectrum,
b) the asymptotic Cramer-Rao bound for the log spectrum

Example 7-- a) the exact Cramer Rao bound for the Tog spectrum,
b) the asymptotic Cramer-Rao bound for the log spectrum

Example 8-- a) the exact Cramer Rao bound for the log spectrum,
b) the asymptotic Cramer-Rao bound for the log spectrum
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MULTICHANNEL ARMA SPECTRAL ESTIMATION BY
THE MODIFIED YULE-WALKER METHOD
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MULTICHANNEL ARMA SPECTRAL ESTIMATION BY THE MODIFIED YULE-WALKER METHOD

Benjamin Friedlander Boaz Porat

Systems Control Technology, Inc. Department of Electrical Engineering
1801 Page Mil1l Road Technion, I[srael Institute of

Palo Alto, California 94304 Technology

Haifa 32000, Israel

ABSTRACT

This paper proposes an algorithm for estimating the power spectra of
multichannel wide-sense stationary processes. The processes are modeled as
the output of a mulitivariable linear system driven by white noise. The
transfer function of the system is given by a numerator matrix of polynomials
divided by a scalar denominator polynomial. The denominator polynomial fis
estimated first, using the overdetermined, order over-estimated, modified
Yule-Walker method. Modal decomposition is used to eliminate superfluous
modes to reduce the order of the transfer function. Finally, the numerator of

the spectral density matrix is estimated.

This work was supported by the Army Research O0ffice under contract no. DAAG29- i
83-C-0027. ‘




1. INTRODUCTION

Parametric models are widely used in the statistical analysis of scalar
time series. In particular, autoregressive (AR) and autoregressive moving-
averge (ARMA) modeling has proven to be very successful in many applications
[11,02]. Many problems of practical interest involve vector processes. As
examples we mention signals in an acoustic and seismic arrays. [t often
happens in such applications that important information is present in the
cospectra of the various channels (rather than in the autospectra). In such
applications it is necessary to perform multichannel processing in order to
extract the desired information.

Traditional multichannel time series analysis is based on the use of
periodograms and windowed periodograms [3]. Multichannel maximum entropy
spectral analysis has also gained some popularity in recent years [4].
Parametric modeling for multichannel time series was discussed by several
authors [31,(5]1,(6]. Usually, the multichannel ARMA model, which is a special
case of left matrix fraction description [7], is used in these discussions.

The main problem in using parametric models for multichannel time series
is their high dimensionality. The number of free parameters is generally
proportional to the square of the number of channels. Note that even a
relatively simple problem involving a two-channel ARMA model of order (2,2)

has 20 free parameters. Simultaneous estimation of so many parameters using a

3
.I'l
R )

maximum 1ikelihood method is difficuit. Problems such as obtaining initial

L

conditions, searching among multiple local minima and selecting the
appropriate order are extremely difficult to handle.
In this paper we propose a parametric spectral estimation algorithm which

is aimed at circumventing some of the practical difficulties encountered in

maximum likelihood estimation. The algorithm uses the sample covariances
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(rather than the data directly), and is an extension of the scalar modified
Yule-Walker (MYW) method with modal decomposition, reported in (8]. The
proposed technique is non-iterative and for the most part requires the
solution of sets of linear equations. The parameters of the denominator and
numerator of the spectral density matrix are estimated in two separate
steps. This alleviates somewhat the problem of high dimensionality.

While the proposed estimation procedure is not asymptotically efficient,
it appears to be more robust and considerably less complex (in terms of
computational requirements) than the maximum likelihood estimator. The MYW
based approach seems, therefore, better suited for practical spectral analysis
problems than the maximum 1ikelihood approach. The facts that initial
conditions are not required and that the computations consist largely of
linear least-squares fits, makes the proposed approach especially attractive.

The outline of the paper is as follows. In section 2 we present the
model to be used, and introduce some basic notations. In section 3 we give a
detailed description of the algorithm. In section 4 we illustrate the
performance of the algorithm by some simulation examples. Section 5 discusses
the main advantages and drawbacks of the proposed technique, and suggests some

possible modifications.
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2. THE MODEL

Let {yt} be a p-dimensional zero-mean wide-sense stationary process. We
assume that {yt} is related to some p-dimesnional white noise process

{w,} by a rational pxp transfer matrix H(z), i.e.
y(z) = H(z)w(2), (1)

where y(z) and w(z) are the formal z-transforms of ) and (W} The
transfer matrix H(z) is assumed to be stable and causal. The covariance
matrix of wt can be assumed, without loss of generality, to be the identify
matrix (since this covariance matrix can always be absorbed in H(z).

The model (1) includes many common parametric models as special cases.

For example, the ARMA model
y(z) = Acl(z)BL(z)w(z) , (2)

is clearly of the form (1). In this case H(z) is written in the form of a

left matrix fraction description (MFD). The AR plus noise model
x(z) = AL(z)u(z) (3a)
y(z) = x(2) + v(2) , (3b)
where {ut} and (vt} are uncorrelated white noise sequences, can also be

transformed to the form (1). In some applications, the natural description of

the process is in terms of a right MFD,
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y(z) = BR(z)Ail(z) wiz) , (4)

see e.g. [9] for such an application. ;
) The main difficulty in using the models (2}, (3) or (4) for spectral £
wh 3

estimation lies in the fact that the denominators of these models are .
52 polynomial matrices. Therefore, the modes of the spectrum do not appear 5
;3 explicitly, but are "hidden" in the determinant of the corresponding matrix . Ff
bt )
bt polynomial (AL(z) or AR(Z)) . An alternative model, which makes it easier to ﬁ
Ea display the spectral modes, is given by v
rh !:
ar -1 3
ok H(zZ) = B{z"*) , (5) ‘
& a(z ]
-;L:
o where a(z™l) is the least common multiple of the denominators of the entries 3
- of H(z), expressed in powers of z'1 . The matrix polynomial B(Z'l) is also fc
| expressed in powers of 2z . In general, a(z'l) and B(z'l) of the same X’
- degree, Ef
¥ 3
E! a(z7l) =1+ alz‘1 ot a 2 (6a) _
e 8(z-ly =8, +8,2z7} + ... +82". (6b) N
- 0 1 * n /
- :

We note that while the model (5) is quite general, it is usually

o overparametrized. For example, let us compare the number of parameters in (5)
to the number of parameters in the ARMA model (2). A p-dimensional ARMA(m,m)

. model has (2m+1)p2 free parameters. The corresponding characteristic

polynomial has degree n=mp, so that in (5) we have mp+(mp+1)p2

parameters. For p = 2 we have 8m+4 and 10m+4 parameters, respectively. Thus,

-
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for two-channel time series, the model (5) is only slightly overparametrized.

Let S(z) be the spectral density matrix of the process Wer

matrix is given by

stz) = —1—_8(z71i8T(2) = . ——TE
alz "alz) a(z™ al(z)

where

z'1+ cee + N2

= -1ygT = n
N(z) = B(z72)B'(2) = N_ 2%+ ...+ Nz + N+ Ny n

Next we write S(z) in terms of the covariance sequence {Ri} .

= T = T -® ®
Ry = Blyg¥p gt =Ry =< i<

Let

s,(zh) 2 lry+ T R
B

i
be the causal part of the spectrum. C(Clearly,

S(z) =5, (z71) + sT(2) .

The causal part can be expressed as

S, (z) = -l—r c(zh) R
* a(z™™")

-n.

This

(7)

(8)

(9)

(10)

(11)

(12)
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where

-1y = -1 -n
Cc(z=*) C0 + Clz el + an . (13)
From (7),(11) and (12) we see that N(z), C(z-l) and a(z-l) are related by
N(z) = C(z=Dya(z) + cT(2)a(z"]) . (14)

As we will see in the next section, the parameters of the matrix

¢(z=l) can be estimated by a relatively simple procedure.
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K 3. THE ALGORITHM a

R

! The proposed algorithm is based on estimating the coefficients of the a

§ rational spectral density matrix from the sample covariances. These are '!

) -

ﬁ computed from the measured data by tﬁ

=i

.

.

Ry = KT, 1) T yoye s s (18)
i t’]z"'l t t’i

]

where K(T,i) is either 1/T or 1/(T-i) (the biased or unbiased covariances ).

Each sample covariance ﬁi is a pxp matrix. We also define for each i a

pz-dimensiona1 column vector ;i obtained by stacking the columns of ﬁ1 .

A

. i.e., E§
I' P - A a~ ~ T ;l‘
;: ?i = [Ri(l'l)"..’Ri(p,l)’...’Ri(l’p)’...’Ri(p'p)] . (16) )‘)‘A;
0
) .
- i
Note that any estimation algorithm based on sample covariances will not be bt
% efficient in the statistical sense, i.e., it will not achieve the Cramer-Rao -
.\' C-:
3 lower bound, even asymptotically* [10]. However, by increasing the number of -
. sample covariances used in the algorithm the loss of efficiency can be made i;
Y
f, quite small [11]. Furthermore, spectral estimation algorithms based on sample
N -
:’ covariances are known to be more robust than algorithms of the maximum }{
v -
: 1ikelihood type (i.e., they are less sensitive to initial conditions, model
‘f inaccuracy, or the choice of the number of parameters). -
> The algorithm consists of three steps. In the first step, an initial Ny
<
. &
) estimate of the characteristic polynomial is obtained by a multichannel L2
2 version of the modified Yule-Walker equations. This initial estimate has a -
:: hY
N
N K.
i ¥Except in the special case of pure autoregressive processes. b
3 ]
i)
,‘ fa 8
a ~
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high degree in general, compared to the degree of the true characteristic
polynomial. Thus, at the second step, the degree of the initial estimate is
reduced to yfeld the final estimate of the characteristic polynomial. This is
done using modal decomposition of the causal part of the spectrum and an
appropriate elimination process. Finally, in the third step, the numerator
matrices are estimated by a least squares technique, using the estimates of
the characteristic polynomial from the second step.

The three steps of the algorithm will now be described in greater detail.

3.1 INITIAL ESTIMATION OF THE CHARACTERISTIC POLYNOMIAL
The covariances of the process {Ri} can be easily shown to satisfy the

Yule-Walker type equations

n
kzl akRi-k = -R_i ;1o el (17)

Substituting the sample covariances for the true covariances in (17) we get

the so-called modified Yule-Walker equations

et s decdeding:,

n

or equivalently,
. 5 i 1 (19)
Qo4 * <Py s > n+l.
ki1 kPi<k |

It was demonstrated experimentally in [12], and proven mathematically in [13],

that by taking an overdetermined set of equations of the form (19) and solving

them in the least-squares sense, the statistical efficiency of the estimated




A S db AN

characteristic polynomial coefficients can be improved, compared to the case

where only the minimal number of equations is used. Thus, in practice we

solve the following set of equations in the least-squares sense:

[ - - 10 7] -: ]
pnz o o e o o o pz pl al pn2+1
6 = |5 p - 1% ] (20)
pn2+1 I <} P2 : pn2+2 .
. . © ila .
: : DLy
P e P P P
n1+nz 1 n1+1 nh n1+fJ

The number of equations in (20) is pzn1 , and the number of unknowns is

n, . It was shown in (8], [14] that, if n, is taken as the true degree of
the process characteristic polynomial, the estimates {51, cens Sn} may be
considerably biased in some cases. This can be intuitively explained as
follows: Equation (20) has the form of a least-squares autoregressive fit of
the "data" (;1, 52, eees } o It is well known that the estimates

{51, ceuy sn} are unbiased only when the error between the two sides of (20)
is a white noise. However, for general rational models, the sequence

{;1, ;2, ... } does not follow an exact autoregression, and the error will
not be white. By taking a sufficiently large order n, in (20), we can
approximately "whiten" the error sequence. Based on this intuitive argument,
the use of Akaike's information criterion was advocated in [8] to determine
the value of n, - Here we follow the same choice, but mention that other
choices have been proposed, e.g. [15],[16].

The number of equations in (20) is usually selected by some ad-hoc
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procedure. However, pznl >> n, is often necessary to guarantee a reasonable
statistical efficiency, see e.g. [12],[13]. We have adopted a constant ratio
between pzn1 and n, for convenience. Thus, equation (20) is solved for
different values of Ny s where pzn1 is always taken to be fixed multiple of
n, . For each solution, the Akaike information criterion [17] is computed,

and the final choice of n, is made by minimizing this criterion.

3.2 ORDER REDUCTION BY MODAL DECOMPOSITION
Let us denote the nz-th order polynomial obtained from the modified
Yule-Walker equations by alz’ly . as explained before, the degree of
S(z'l) is usually much larger than the true degree of the characteristic
polynomial. Furthermore, it was shown in [8] that a final estimate of the
characteristic polynomial can be chosen to be a divisor of 5(:'1) . This

divisor is obtained by the following process of decomposition and elimination.

Let us factor S(z'l) into its first- and second-order real factors:

y nr ) nc

~ - - -1

a(z™") = o d. (27" (n e, 27")) , (21)
(1-1 i )(1=1 2 )

where nr is the number of real roots and nc is the number of complex pairs

of roots, so that n, = n.+ ZnC . The polynomials {di(z'l)} are of degree

1, and the polynomials (ei(z'l)} are of degree 2, i.e.,

-1y . -1
di(z Yy =1+ dl,iz . (22a)

-1y . -1 -2
e1(z Yy =1+ el,iz + ez’iz . (22b)

Since S(z‘l) is not guaranteed to be stable, it {s necessary to replace it by

11
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a stable spectral factor of a(z=1)a(z) . This is done by reflecting the
unstable roots of a(z) inside the unit circle, as follows: whenever

d;: |> 1 we redefine d,(z) as
i,l i

gzl =14 L2t (23a)
1,i

Similarly, whenever lez 1| > 1, we redefine e;(z) as

e N
ei(z'l) =1 + el" s el 272 . (23b)
2,1 2,1

Assuming that all the roots of a(z-l) are distinct, we can use (10) to make
the following approximation,

-2

.2
. T —}*nlz), (24)
=t l+e1,jz +e2’jz

n n -1 n -1
3 § r Dl,jz . c El,jz + E2

Xﬁ Z- -{ -
51 Ve e 4 4 I

where p(z) is the z-transform of a rectangular window on the interval [1,n3],
and * denotes a zomplex convolution. The number of covariances nq is chosen
so that n3 > n2 .

The expansion (24) will be used to select modes that will appear in the
final estimated characteristic polynomial, and to eliminate undesired modes.
To do this we estimate {01'3} and {El,j' Ez,j} by performing the following

Jeast-squares fit in (24): 1let us denote

1 T i

= f z (25a)
dj(z'I) 120 t.d
—L - T g Jz'1 : (25b)
eJ(z' Yy =0
12

e
¢ Y

&

5273
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Then we can express (24) in the time domain as

o
= | 1
E :2 (26a)
AT
Pn3
where
Ff ... f
0,1 O,Hr
fl’l DY . fl.nr
Fa . (26b)
f .ee
r‘3-1,1 n3-1’nr
_ -
go'l 0 * o go.nc 0
1,0 % g %o
_— . . (26¢)
g g ... g . (do by hand)
n3‘1,1 n3"2|l N3-1,nc gn3-2,n Y
L o
— . B ]
T T
1.1 1,1
6T ET
i 1,2 .| %21
5 : e (26d)
T T
LT L

The vectors 51 j are obtained by stacking the columns of 0y j? the vectors

€ .j by stacking the columns of El o and the vectors €3 by stacking the

13
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columns of E2 j (cf. equation (16)). Equation (26a) is now solved in the
least-squares sense and the solutions are "unstacked" to yield
{DI,J} and (El,j’ Ez,j) .

The next step is to compute the energies of the individual modes in the
various channels. It is not difficult to show that these energies are given
by the following formulas.

2
[(Dl,j)z, ]

Energy of j-th real mode in channel #g = -—-—Tr—la— , (27a)

L-d

Enerqgy of j-th complex mode in channel #3 =

12}-2¢

2
(1ve, MU(E) Ia,ad%(E, o)) o l’j[(El,j)I,IJE(Ez,j)l.IJ.

(27b)
(l-ez’j)(1+e2’j+e1,j)(1+e2'j-e1’j)

Typically, the true modes (i.e.. those present in the actual spectrum) will
tend to have relatively high energies, while spurious modes will have
relatively low energies. We therefore arrange the (nr+nc)p energies in order
of decreasing magnitudes, and associate each energy with its "parent mode".
The mode selection process can now be done, using e{ther of the two following

criteria:
(i) Energy threshcid criterion.

In this case all modes whose energies are above a certain threshold
are retained, and the other modes are discarded. [t is convenient to
measure all the energfes in dB relative to the highest energy, and

then a reasonable threshold would be, e.g., -50 dB.
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(i) Order criterion.

In this case a pre-selected number of modes (corresponding to the
highest energies) is retained, and the rest are deleted. This is
convenient in cases where the true order of a(z'l) is known a

priori,

Finally, all modes chosen to be retained are multiplied out to form the final
estimated characteristic polynommial a(z"ly . Clearly, a(z"l) is a divisor
of 5(2'1). Also, the mode selection procedure described above guarantees
that these modes capture most of the signal energy, in the sense of the

approximation (24).

3.3 ESTIMATION OF THE NUMERATOR
Numerator estimation is based on the additive decomposition (11),(12).

Similarly to (24), we can approximate §+(z'1) by

n
R 4
Fho+ 1 Rzt e hy r ala (28)
i=] a(z )

where 1(z) is now the z-transform of a rectangular window on the interval

(0, nq]. The number ng can be taken to be much smaller than n3, because the

order of S(z'l) is usually much smaller than that of ;(z'l) . Let us
denote,
-.-L_I—’ E hiz'i . (29)
a(z ) i=0
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. Then we can rewrite (28) as
) - - - - — =
" N [ a1 1 T
x, - 0 Yo Z 0
> 1 °h
e . 0 . T ~T
, : " n|l= (" ,
~ : ?‘ e s s e o t:o : :
” : . ' ' (30)
“ PS AT
h « ¢« o s o o« o h ~ yI p
: L ng n4-nd _n i _nu
% where the vectors ;i are obtained by stacking the columns of Ci .
‘ Equation (30) is solved in the least-squres sense, and the solutions are
“unstacked” to form (61.) . Finally, the numerator of the spectral density
¥ matrix is computed by
r-
= i(z) = &z"hacz) + ET2racz ). (31)
3
<
b The estimated numerator f(z) and denominator a(z™l) can be inserted into
Ve
. equation (7) to provide the desired spectral estimate.
A,
[
2
g
o
3
i
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4. SIMULATION EXAMPLES

The algorithm described in the previous section was programmed and tested
for various types of two-channel processes. Here we illustrate the

performance of the algorithm by three examples. Ir all examples the number of

!? data points was T = 1024, and nl = 20, n2 = 16, n3 = 16, "4 = 8, X
X Example #1:

- Here we generated the data by a right MFD BR(z)Ail(z) , where p

B

1-1.827 + 0.95272 0 :

(z) = , (32a) y

* 0.3z27% + 0.6272 1+0.6271+0.952"2 i

]

1+0.3270 + 0,422 0.8270 + 0.3272 ‘

)| B (2) = (32b) '

0 1 +0.6272 ' j

Figure la shows the autospectra 511(“) and S

o 22(u) , and the co-spectrum

T SZl(w) (magnitude and phase) of this model. Figure lb shows the

L corresponding estimates obtained by the algorithm. As we see, the estimates

. match fairly closely the true spectra, except at froquencies where the energy
density is very low. This is not surprising, since any estimation based on
least-squares fit would give 1ittle weight to low energy regions.

&
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Example #2: §¥
]
Here we generated data according to the model
5
= i 1 -
yl(t) /Z sin anlt t> /2 sin anz(t D) + nl(t) , (33a) _
-
yz(t) = /2 sin anzt + nz(t) , (33b) v
!
where nl(t), nz(t) are uncorrelated zero-mean white-noise sequences, with -
unit variance. The frequencies fl’ fz were 0.12 Hz and 0.18 Hz )
respectively. The time-delay D is 2 seconds. fj
e
The estimated autospectra and co-spectrum are shown in Figure 2. Note )
that both sinusoids are well represented in Sll(w) . Also note the slight i{
"leakage" of the first sinusoid into the second channel. In the next section
we comment on how such "leakage" can be avoided. [
Example #3: h
Here we generated the data by the left MFD AEI(Z)BL(Z) , where E:
™
1-21+ 0872 27 +
A (z) = ' , (34a) .
L -0.02z°! + 0.0127%  1-1.2271 4 ;72 =
=
>
s -0.327! - 0.zt 5
8, (2) =I . (34b)
L o0zt 100327
<
18
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The characterisitc polynomial in this example has two narrowband modes with
relatively closed frequencies, as shown in the ture spectra in Figure 3a.
Also, both channels have relatively low energies at the high frequency band.
As we see in Figure 3b, the estimates are fairly accurate in the low frequency
band, but quite inaccurate in the high frequency band. Evidently, the
algorithm has problems in adequately representing the frequencies where the
energy density is low.

Numerous other tests not shown here indicated a similar behavior: good
accuracy at high energy regions, poor accuracy at low energy regions, and some

“leakage" of energy from one channel to the other.
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5. DISCUSSION
We presented a spectral estimation algorithm for multichannel stationary
time series with rational spectra. The proposed algorithm {s non-iterative
and requires mostly the solution of linear sets of equations, except for the
factorization of the estimated characteristic polynomial. The algorithm is
fairly robust in the sense that

(1) No infitial conditions are necessary;
(i) Various types of rational models can be handled by the algorithm;

(ii1) The model order need not be known a priori, but is estimated by
the algorithm.

The main disadvantages of the algorithm appear to be as follows:
(1) The algorithm is not efficient in the statistical sense;

(41) The accuracy of the estimates in frequencies of low energy
densities is poor;

(1i1) Some inter-channel "leakage" is apparent;

{(iv) Positive definiteness of S{z) on the unit circle is not
guaranteed.

Point (i) 1s inherent to any algorithm based on the sample covariances. Point
(i1) is also typical to many algorithms based on sample covariances,
especially those which are based on some least-squares fit. Point (i1i) can
be largely solved by the following modification of the algorithm: instead of
performing mode selection using the diagonal elements of S+(z) , We can
perform individual mode selections for the p2 elements of this matrix to

obtain p2 different denominators, instead of one common denominator. The

20
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various thresholds used in this selection procedure can be adjusted so as to

il eliminate any undesired leakage. The improved version of the algorithm is

currently under investigation, and results will be reported later.
| EE As to point (iv) the only way to guarantee positive definiteness of the

spectrum appears to be by direct estimation of the spectral factor B(z'l) .

g! This leads, however, to a nonlinear problem, which requires some iterative

X techniques for its solution - see e.g. [18], [19]. Procedures for estimating

t} the spectral factor B(z'l) appear to be inherently more complex than

EE techniques for estimating B(z-11T(2) .

Eé

.-,.
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SUCHIN =5

Figure la Example #1: right MFD - true spectrum

Figure 1b: Example #1: right MFD - estimated spectrum
Figure 2: Example #2: sinusoids in noise - estimated spectrum
Figure 3a: Example #3: left MFD - true spectrum

Figure 3b: Example #3: left MFD - estimated spectrum
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APPENDIX F

OPTIMAL INSTRUMENTAL VARIABLE MULTISTEP ALGRITHMS FOR
ESTIMATION OF THE AR PARAMETERS OF AN ARMA PROCESS
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OPTIMAL INSTRUMENTAL VARIABLE MULTISTEP ALGORITHMS FOR
ESTIMATION OF THE AR PARAMETERS OF AN ARMA PROCESS

P. Stoica, B. Friedlander and T. Sgderstram

-ABSTRACT

Multistep implementations are derived for the optimal instrumental
variable (QIV) estimators introduced in [1]. The proposed algorithms provide
asymptotically efficient estimates of the AR parameters of an ARMA process.
The computational complexity of these algorithms is modest compared to the
(exact) maximum likelihood estimator. The performance of the OIV algorithms
is i1lustrated by some numerical examples.
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Oepartment of Automatic Control and Systems Analys®s, Institute of Technology,
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1. INTRODUCTION s
i

The need for estimating the parameters of an autoregressive moving-

average (ARMA) process arises in many applications in the areas of signal

processing, spectral analysis, estimation and system identification. A

computationaliy attractive estimation procedure, which has received -
considerable attention in the literature, is based on a two-step approach: -
first the autoregressive (AR) parameters are estimated using the modified f’
Yule-Walker (MYW) equations; then the moving average (MA) parameters are o
estimated by one of several available techniques [2]-[7]. m
d
In this paper we consider only the first step of estimating the -
autoregressive parameters. In many engineering applications the second &2
estimation step is not needed. The prime example is the estimation of =
autoregressive signals corrupted by white measurement noise. In this case all ig
the information about the spectral shape of the signal lies in the AR o
parameters of the signal-plus-noise ARMA process. -
=4
e

In a companion paper [1] we presented a number of results related to the
asymptotic accuracy of a fairly general class of instrumental variable (IV)
estimators, which includes the MYW estimator as a special case. In

BUC R
A A4

particular, it was shown that estimation accuracy increases monotonically with -~
the number of MYW equations for an optimal choice of the weighting matrix used =
in the least squares solution of these equations. Furthermore, the asymptotic .
error covariance of the optimal IV method equals that of the prediction error §f
method. In other words, the optimal IV method is asymptotically (as the
number of data points and the number of MYW equations tend to infinity) ?3
efficient. An alternative form of the optimal IV method involving pre- -
filtering of the data used in the instrument vector while using a minimal {7
number of MYW equations was also discussed. N
The main difficulty associated with the optimal IV method is that the Ef
optimal weighting matrix, and the optimal pre-filter, depend on the second-
order statistics of the data, which are not known a-priori. The objective of g;

this paper is to propose several multistep algorithms for overcoming this
difficulty. As we will show, these algorithms provides asymptotically

[P
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efficient estimates of the AR parameters.

The structure of the paper is as follows. In section 2 we briefly review
the resuits on optimal instrumental variable (QIV) estimation derived in
[1]. Three approximate implementations of the OIV are presented and analyzed
in section 3: one based on an optimal weighting matrix and .wo based on an
optimal pre-filtering operation. The implementation of. these forms of the OIV
estimator by means of a multi-step procedure is discussed in section 4. The
performance of the proposed estimation techniques is studied in section 5 by
means of some numerical examples.

The work presented here and in [1] provides an extension of IV methods
which are usually applied to system identification, to problems of time series
analysis. For an overview of IV methods and their applications see [11]-[12].

2. THE OPTIMAL IV ESTIMATES

Consider the following ARMA process of order (na, nc)

ata hiy(e) = cta Hetr) (1)
where

e(t) = white noise process with zero mean and variance AZ .

-1 -1 -na
Alg ") = 1+ a9+ ...+ a0 .

-1 -1 -n¢
Clg™) =1+ €1q " * ... *Cpq .
-1 -1
q = unit delay operator (q "y(t)=y(t-1)) .

The following assumptions are made:
Al: A(z) =0=Jzf{ >1;Clz) =0=|z] >1.

In other words, the ARMA representation (1) is stable and invertible.




-

‘Hl

L &=

This is not a restrictive assumption (cf. the spectral factorization theorem,

()
,; e-g-, [16])'
"W f‘;
;x A2: a . £ 0, Crc # 0, and (A(z),C(z2)} are coprime polynomials.
) In other words, (na, nc) are the minimal orders of the ARMA model (1). -
R 3
‘g Next we introduce the notation: Ly
o T q
[ olt) = [-y(t-1),...,-y(t-na)l’, o
:\-' T
- e (2) 3
-_ (y
C v(t) = Clg Helt). )
).'J '.'}
oL R4
%I Then equation (1) can be rewritten as .
. d
) y(t) = ¢ (t)e + v(t) (3)
- 1
1&3 The unknown parameter vector ¢ will be estimated by minimizing a ~
’f- quadratic cost function involving the data vector 4(t) and an IV vector ;3
3 zm(t) : =
X 5 Tt 2 (ty(n) (a) 3
i: g=arg ming[ T thy (t)le-r 7 thy(t) tun, o
%; 3 t=lzm t=1Zm -0 A

where

=4

e

Ir.r.
..
il

" N = number of data points, =
- .
< N
= 24 T y oy
- ;xno = xQx , Q = apositive definite matrix , “
- i
- and
\‘ -
ey .:‘
‘ y(t-nc-1) s
s 2 (t) = G(q7h) ., mona, (5)
o m \

{ y(t-nc-m) $5
i

- (']
. 4 -J
1, "
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‘- A N R R z ' .""‘ -‘ »- ."'" " 0.!"0‘5',0 ..a ’ .Q‘ ‘ 0 0 ".b e )




,,,,,,

where G(q'l) is a rational filter. We assume that

A3: G(q'l) is stable and invertible, and G(0) = 1.

J;J -

[t is straightforward to show that the IV estimate in equation (4) can be
obtained by a least-squares solution of the following system of linear
equations:

eE -

2L

N R N
M2 Tz (theT(t)]6 = QL2 L e 0] (6)
t=1 t=

S |

~x

where 01/2 is a matrix square-root of the weighting matrix Q (i.e.,

Q= QT/2 01/2) . The class of estimates defined by (6) includes the various
MYW estimation techniques discussed in the literature as special case; see [1]
for details.

=

It was shown in [1], that under conditions Al-A3, the covariance P Of
normalized estimation error (/NVx)(g-e) obeys the inequality

|

2 8 ral o=l -1
2 po>P G RISTERIT, (7)
LY
‘ where
) R = E{z (t)g'(t)] , mxna (8)
i m m s ’
-1 -1 T
- Sp=E{[C(q )z (t)][Clq )zm(t)] }, mx m. (9)
. Equality in (7) can be shown to hold for the "optimal" weighting matrix
& 1
where Q =5, (10)
~
.
) Furthermore, it was shown that
3 - .
i m > Pmsy » for all m>na. (11)

.’ \.":'

. The monotonically non-increasing sequence Em converges to a 1imit denoted by




WP Tt T Ow o T By Tyoy h-a ek —adhi ARG s A R el "o ittt ol S A Sl S At o et E A Ra Ll et sl adt At Aal Rek Aad Balk S B Ak ol 4

- -
v
e «

[ 4

-
.lL" o

A 6. . This limit was shown to equal the (normalized) error covariance matrix ue
. Ppgy associated with the Prediction Error Method (PEM). See [15] for a b
N discussion of the PEM and its properties. Here we note only that PEM is an -
! efficient estimator, i.e., Ppgy equals the Cramer-Rao lower boung. Thus, the ;;
¢ IV estimator in (6) is asymptotically efficient if we set Q = S' and let

N m+ o, The asymptotic error covar1ance matrix P does not depend on Ei
y G(q'l) and we will usually choose G(q ) =1. See [1] for proofs of the -
k statements above, e

It was shown, however that the rate of convergence of P is affected by
the choice of G(q~ ) , see [1]. If we set G(q ) 1/C (q ) , then we get
the fastest possible "convergence rate": P P for m > na . Note that for

)

' m

} m=na the matrix Q in (6) does not effect the solution and can be set to Q=I.
[}

==

_ Another interesting choice for G(q'l) is G(q-l) = A(q'l)/Cz(q'l) . In
" this case S 2 xZI . Thus, the optimal weighting matrix is Q = I (the

scaling factor l/x does not matter).

AN
Pr 1 )

B’ To summarize, we have (at least) three ways of generating optimal IV
‘3 estimates using equation (6): i

ov-1: Q=5 ,6leh =1, moe (12) -

- =

4 orv-2: ¢ =1, (g = 1/¢2qh , m=na (13) y

|. ‘:}:

. _ TP Ty S =
0IV-3: Q = I, G(q “)=Alq )/C°(q "), m+» = (14)

. The problem is that both of these methods depend on knowledge of unknown
5 quantities. This is the usual dilemma in accuracy optimization. Jur aim here .
is to show how to overcome this difficulty for the case under consideration. =i

A

We w111 start by showing that replacing S, (in 0IV-1), C(q' ) (in 01V-2)
and Clq ) JAlq” ) (in 0IY-3) by their consistent estimates, will not affect
asymptotic estimation accuracy. Then we show how to obtain such consistent
estimates of S, and C(q'l) . The provosed estimation procedures are
therefore based on estimating S, or C(q'l) and using these estimates in (6)

-
A

4,
13
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instead of the true S, or c(q'l) . As we will see, the implementation of
0IV-1 does not require explicit computation of C(q'l) . This may be
advantageous in applications where only the AR parameters need to be
estimated. A more detailed discussion of the proposed algorithms will be
given in the following sections.

3. ANALYSIS OF THE OPTIMAL IV MULTISTEP ESTIMATORS

In this sections we analyze the asymptotic properties of 0IV-1 and OIV-2
by techniques similar to those used in [1],[13].

3.1 APPROXIMATE OIV-1

Let §m denote a consistent estimate of S . Let 51 denote the 0IV-1

estimate (6),(12) for a given in (possibly m = m(N), where m(N) increases
without bound as N + =) and let 51 be the approximate QIV-1 estimate with Sm

replaced by §m . Then we can state the following theorem.

Theorem 3.1

Let assumptions Al-A3 be true, and assume also that §m'sm = 0(1/ﬂ)* and
that [m(N)]B/N as N + ». Then 51 and 51 are asymptotically equivalent.

We will say that two consistent estimates of ¢ , say 51 and 31 , are
asymptotically equivalent if

8, - 8, = O(INP) for 5> 0.5

tWe will use throughout the paper the notation O(e) to denote a random

variable with standard deviation Ke , where ¢ 1is small and where K is a
(fintie) constant independent of ¢ .
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Proof:

From the assumption above it follows that for sufficiently large N we

have

1 -1 -1 -1

§-la(s,+ 0L/ ) h=(1 + o(myy))Ls es” +0(m WY )

Mote that the 0IV-1 solution of (6) can be written explicitly as

N
- -1 Rlg~l 1
% ° V Sm RN] RuSm v tzlzm(t)y(t)}}

where

N
Ry 8L 5 2z (t1eT(t) .
N tzl m

It is straightforward to show that

-1 T -1

N -
8y -0= (RS Ry ] [REST i PRESCECILZDE

Similarly,

- N
3y-a=(RY S-lry ) 7l(RY §-1ik Lza(evin ).

From (15), (18), (19) it follows that

- -1, Tre-l
el-e “LS +0Lm /INjIR

(R[S, +O(m VM)

1 N
ooz (t)v(t)} =
Npgp m }

Te-1 T P
=(Ry ST R ¥(m //N)}”

{RoSm N { Z, (t)v(t)+0(m* /NY}

= (5, - 8) + O(M/N)
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Since ms/N = (m//ﬁ).(m4//i) , and since m4//ﬁ + 0 by assumption, it follows

that the second term in (20) goes to zero as N » = , faster than the term
51 - 3 (which is O(m//N) , cf. (18)).

e
hh The convergence of 6m to 5¢ may be slow, especially if C(z) has zeros
X | close to the unit circle, see [1]. For the idealized 0IV-1 estimate 81 we

e may then need to consider a large m in order to obtain good accuracy. For the

ik practical estimate 51 the situation is, however, different. If m is too

‘ ~

\T’. -~ P
large with respect to N then el and 8, may not have the same distribution

;S and thus 51 may not be (asymptotically) optimal. Theorem 3.1 gives an upper
bound on m (m(N):Nl/a'G, § > 0) guaranteeing that 31 and 51 are

o~ , , .

o asymptotically equivalent However, no attempt has been made to give a tight
bound. In fact this seems quite difficult since a tight bound would be

ft problem dependent. In section 5 we discuss further this point and illustrate

- it by means of some simulations. It is shown there that the bound of theorem

ii 3.1 is quite conservative. That is to say, 51 and 51 may behave similarly
for m> Ml/s . As explained earlier, one needs to consider large values of m

E{ when the convergence of Sm to 5@ is slow.

!l 3.2 APPROXIMATE 0IV-2

RN

Let ﬁ(q'l) denote a consistent estimate of c(q'l) . Let 52 be the
A approximate estimate obtained by replacing c(q‘l) by E(q'l) in the 0Iv-2

estimate 32 (6),(13). Then we can state the following theorem.

-
&~
) Theorem 3.2
e
N Let assumptions Al-A3 hold true and assume that i
éT Ei'ci = 0(1//M), i=1,...,nc. Then 52 and ézare asymptocially equivalent. %
” :é
_;. Proof: 3
- >
The 0IV-2 solution of {6) can be written explicitly as o
N
. o
9 A

‘ 5!
-, et ey PRI AR T -

A e YR N o A L A L
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\ i3
K .
S S L | 3
o 9 = RN {}T N I o (t-nc) y(t)} (21) -
::‘ t=1 C°(q ") B
:5 where <]
L N
- 1 1 T =3
" Ry = o ——— ¢{t-nc) ¢ (t) (22) -
. N N tz__l C (q‘l) ._"
;:: [t is straightforward to show that :j
L) F
” %8 = R Iy ; o altene) v(B)] (23)
¥ t=1 C"(q ) F
ko and with
# s
C sk Y b ttene) oT(e) (24) =
> that B g o
A} . “ -.:
2 e = (AL (T b eltene) vl = :
: t=1 C"(q ) fi
- R R
3 Ry { —1— ¢(t-nc) v(t) o
- VTG 2T ~
.{
2 M b,
N G 1 e ltene-l),.., N
Lf' t=1 C7(q ") "‘{
X 2

2
NN |

+--0(t-2n¢) Jv(£) ) (€-C) }+0(1/N)=(8,-9)+0(1/N) (25)

o where -

4
N
_ T 2 _ .0 ~ LT
¢ = [Cl""’cnc] , C [cl,. "cnc] -
. e
Since 52-9 = 0(1//N) it follows from (25) that ;2 and 52 are asymptotically
equivalent. Note that here the choice of the number of MYW equations is not ;3

an issue, since optimality is achieved for m = na . However, the
implementation of the 0IV-2 estimator requires estimation of the o
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C(q-l) polynomial, while this can be avoided when implementing 0IV-1.
Estimating C(q-l) is not an easy task and one often wants to avoid it, if
possible. The relative advantages and disadvantages of the two estimators are
discussed further in the following sections.

3.3 APPROXIMATE OIV-3

Let é(q'l) and,i(q'l) denote consistent estimates of C(q-l) and Alqg™h)

respectively. Let 84 be the approximate estimate obtain by replacing

C(q'l) and A(q'l) by 6(q°1) and i(q'l) in the 0IV-3 estimate 53 (6),
(14). Then we can state the following theorem.

Theorem 3.3

Let assumptions Al-A3 hold true and assume that Ei-c. = 0(1//n) ,

»>

i=l,...,nc and sl-ai=0(l//ﬁW , i=1,...,na. Then 93 and 35 are

asymptotically equivalent.

Poof:
Let
s 1 N
RN = ﬁ-tzl zm(t)¢ (t) (26)
where
. ~ -l y(t-nc-1)
2q(t) = A9 ; (27)
¢“(q ") y(t-nc-m)
then
Ry = Ry + 0(1//N (28)

Ry = Ez (the (1))

11
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.;il
; ; : -1 -1y ,02, -1 ta
where zm(t) is as defined in (5) with G(q™*) = A(q~*)/C%(q"") . 3
Thus, '_':
: . - . -
(Ry R AL o z,(thv(t) = 3
t=l A
=5+ (Ry ROTIRI L "3 (e (29) o
= N N - Zm v Y
t__l P
Now ﬂ
(R &) =(RIR +0(m//AN L= (RIR ) T+0(m/ /M) (30) :
and
T4
. - 3
N 1. Zptthvit) =& 7 z (t)v(t) + O(1/N) (31)
t=1 t=1 a2
Thus d
s o = tTa 1-l T
9,-9 [(RNRN) + O(m//N)][RN+0(1//m] i
[~}
+ ; (thv(t) + O(1/N)] = .
:.' N 51 §n
e N o
N To -1 T1 m
. LORYR)™+0(m/ /A IRy & T 2 (t)v(t)+0(m/viD)] |
t=1
N = ~ ~ ﬂ
= 0(m//N)
N
2 3
2 = (s 2 (32)
- = (83-8) + O(m"/N)
7:15 or
e
N 3y - 5y e 0m2N) (33)
3R P
& - - -
: Since (93 - 3) = 0(m/,/ W) (see (32)), we conclude that for 35 and 9, to
A
% be asymptotically equivalent it is sufficient that
»‘“.;
s
K
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m//N+0 as mN » = (34)
In that case mz/N = (m//'ﬁ')2 goes to zero faster than m//W .

The requirement in (34) that m//N » 0 is not restrictive, since the fact
that 8,- 8=0(m//N) will not be true if (34) does not hold.

The behavior of 5m (for 0IV-3) as m increases is quite different from
its behavior in the case of 0IV-1. By specializing the results in [1] to the
case of 0IV-3, it can be readily shown that 5;1 obeys the discrete-time
Lyapunov equation

5-1 sl T T

Pm+1 - A Pm A" = bb
where

A ':1" LY P

I ’
0 R |
b =+ E{s(t) » —o— elt-nc-1)]
Clq ™)

From the equations above we conclude that the convergence rate of p depends
on the zeroes of A(q~ ) » but not on the zeroes of C(q . The reverse is
true for 0IV-1; see [1] for details. More specifically, |P -p | IAMAX|ZM
where AMAX is the zero of A(q‘l) with the largest modu]us. Thus, when

Alq 1) has roots closer to the unit circle than the zeroes of C(q ) s
expect P to converge faster for OIV-l than for 0IV-3 (and vice-versa when
the zeroes of Cl(q ) are closer to the unit circle than the zeroes of

Ala™h .
4., IMPLEMENTATION OF THE OPTIMAL IV MULTISTEP ESTIMATORS

4.1 THE OIV-1 ALGORITHM

Let us denote by rv(r) and Rz(r) the covariances of v(t) and zm!t)
respectively:

PR PRI Q- T ENDLIDR WS A
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Rt the gt = 2 TS WO Cadl

r (1) = E{¥(t) v(ter)] (35)
R,(c) = E{z,() 2z (t-1)} (36)

Next note that,

nc nc
s, E[Cla )z (t)ca™)z) (0} = fL L, ¢y lt-)zy(t0)} =
nc YIC . nc , nc
-iZO jgo ciCjRZ(J-i) -r=§nCL j=0 cjc5+r)RZ(T) B
1 o° (37)
"% I, (Rl

{In the following we will omit the facor l/x2 appearing in (37) since the IV
estimates in (6) are invariant to scaling of the weighting matrix Q). Hence
we can consistently estimate the optimal weighting matrix by S;l where

- n - a
Sp= I ryfoR, (o) (38)
where ;v(’) and ﬁz(f) are the sampie covariances

a 1 N -

rv(t) = ﬁ't;, vit)v(t-) = rv(-r) (39)

2,(t) 21(t-2) = AL (=1) (40)

e~ =

- 1
R (t) = 7
z N t=1

Note that (38) provides a method for estimating S without explicit

estimation of the {c;}parameters. To estimate Fv(r) via {39) we need to
compute (an estimate of)
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v(t) = Alq™h) y(t) (41)

An alternative way of computing ;v(r) follows from (41):

- na na. . . (42
rv(r) = 1'>50 jZO a; aj ry('r+1-J) . )

Note that both (39)(41) and (42) require knowledge of the {a;} parameters.
Since A(q'l) is not known a-priori, we must use a multistep procedure. e
first estimate (a;} using equation (6) with Q=I (and G(q'l) =1). The will
be problem dependent, but generally m will be considerably larger than na; see
[11(7]. This gives a consistent, although not efficient, estimate of the AR
parameters. These estimates can Tow be used to compute ;v(r) via (39) and
(41), or (42). Next we compute S (29) and use it in the 0IV-1 procedure to
get the final (asymptotically efficient) estimate of the AR parameters.

We can now summarize the proposed implementation of the 0IV-1 estimator:
(i) Estimate {a;} by equation (6) with Q = I, G(q'l) =1 and m > na.

(ii) Compute ﬁz(r) (31) and ;v(r) by (39) and (41), or (42), using the
{a;} estimates from step (i), and then compute §m (38).

(iii) Compute the square-root 5;1/2 of §;1 ; then solve equation (6) with
01/2 = §;1/2 to obtain the final {a;} estimates.

Note that the computation of §m via equation (40) does not guarantee
that §m will be a positive definite matrix. 1t may happen, therefore, that

a

5;1/2 does not exist. This is unlikely to occur for large N, but is quite

likely for small sample sizes (especially if C(z) has roots close to the unit
circle).

The following is a procedure for handling the case where §m is not

positive definite. Let {Ai}?zl be the ordered eigenvalues of
e . m ;
Smr AL 2 Ao 2 ee 3 g and let Vi}i=y be the corresponding

15




eigenvectors. Let

2 =
x|

:\ A > € k=1,...,n

> (43) g
o~ A <€ k=nx1, ..., m -f§

LY

S with ¢ being a (small) positive number. Further, let & be the class of :]

’:j positive definite matrices with eigenvalues larger than or equal to ¢ .

;j Then, according to Lemma Al in appendix A, the Euclidean distance between j§
| §m and the elements of ¥ is minimal for the matrix §n given by :

1 S = Va[di VT (44) Ei‘

3 Sp = Ve[d13g0hp 5o ahs €5nenne)]-

i el

™ where V = [vl,...,v ] . We will use 53

m

¢

o -

- Sml/z-dwg( . ..,—1-_;_— . —_1_ s seey —i )VT (45) ;

L. /xl N, Ve e L
'rl

ki

‘ in (6) instead of §;l/2 ,
- consistent estimate of ,°

which may not exist. Since §m must be a

sm, ¢ must go to zero as N tends to infinity. To

o guarantee consistency we may set ¢ = 1/NB, 83>0.,. As N » = we will

E: have § - §m , W ere §m is a consistent estimate of AZSm . Concerning the
choice of g8 we note that the smaller ¢ , the smaller is the distance between

«
A
-

. W

N S and S cf. Lemma 1.1. However, too small an ¢ may lead to ill-

Eﬁ condition1ng problems. Thus ¢ should be chosen as a compromise between ;g
E§§ accuracy of the solution and numerical stability. Finally, note that if the N
éi estimated covariance matr1x S happens to have negative eigenvalues then we

Q:; may suspect that the {a } est1mates obtained in Step (i) were poor. We may Ej
- then wish to repeat Steps (ii)}-(ii1) using in Step (ii) the improved estimates

of Step (1ii). _ -1

P

4.2 THE OIV-2 ALGORITHM

The computation of the 0IV-2 estimates requires the estimation of the
{¢;} parameters. There are, of course, many different ways in which this
could be done. We consider here one such method based on factorization of the

2. lh’ y PR
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MA spectrum [8]1-[10].

Let Sv(z) denote the spectral density fucntion of v(t), (2), (41). We
have

nc
s,(20 & 7 etz =\ Eaiczh (46)
v
=-nc
where rv(k) denotes the covariance of v(t) at lag k (35). In other words,
the C(z) polynomial is the spectral factor of the spectrum of v(t). This

suggests the following procedure for estimating the {¢;} parameters:

(a) Estimate the {a;} parameters using (6) with Q=I, G(q'l) =1,
m > na.

(b) Compute the sample covariances ;v(k), k=0,...,n¢c , using (39) and o
(41) or (42). o

- nc .
(c) Perform spectral factorization of Sv(z) = 7 rv(k)z'k to obtain
- =-n¢
{ci} .

Note that the sample covariance sequence {;V(O),...:Fv(nc),o,o,...}

is not guaranteed to be positive definite. Thus, sv(z) may not be
factorizable. This may happen in the small sample case, especially when C(z)
has roots close to the unit circle. However, note that 0IV-2 requires an
estimate of Ez(q"l) rather than of éz(q'l) We can always obtain a consistent
estimate of Ez(q'l) by factoring §3(z) , since

§2(e34)=E2(eI)i2(eu) 5 0, for a1t (47)
even though §v(ej“) may be negative for some values of u .

We can now summarize the proposed implementation of QlV-2:

(i) Estimate E(q'l) using the spectral factorization method described
above. Let G(q'l) = 1/62(q-1) .
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" (i1) Estimate the AR parameters using equation (6) with Q = I, m = na
- and é(q'l) from step (i).
,E::
jé Mote that it is possible to {terate this procedure by using the AR
N parameters obtained in step (if) to improve the estimate of C(q'l) , by
fz repeating step (i) (the factorization method) with the new {Qi} parameters.
Q 4.3 THE OIV-3 ALGORITHM
The computation of the 0IV-3 estimates is very similar to that of OlV-
2. The only difference is that G(q ") = A(q 11/C2(q"!) where A(q™)) is the
Qj current estimate of A(q'l) (obtained from step (a) in the first iteration of
(4 the algorithm, or from the previous step (ii) in the case of re-iteration).
7
" 4.4 COMPUTATIONAL REQUIREMENTS
; The following is a brief summary of the number of arithmetic operations
X (i.e., multiplies and adds) required by each of the algorithms described
- above.
3y
- 0IvV-1:
'5; Step (i): requires approximately ~(m+na)N operations to compute the sample
‘i’ covariances and ~m3 operations to solve for the initial estimate (solutions
ﬁ requiring only ~mz operations are also possible if the Toeplitz structure of
[ the Yule-Walker equation is used). Step (ii): requires -(na)z.nc operations
" to evaluate ;v(f) using (42), or ~(na+nc)N operations using (39), (41). The
- computation of Sm requires ~nc.m2 operations. Step (ifi): requires ~3m3
: operations. A recursive QR algorithm which appears to be useful for solving
. (6) is presented in Appendix B.
').'l
?; olv-2:
A
a Step (a): requires ~(m+na)N + m3 operations, as in the case of QIV-1. Steps
- (b): involves the computation of ;v(’) which requires ejther ~(na)2nc or
ﬁﬁ ~(na+nc)N operations. Step (c): computational requirements will depend on
"2
-3
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the particular factorization technique. Step (ii): reauires
~2(nc+nalh + (na)3 operations.

0IvV-3:

Steps (a)-(c) -- same as QIV-2. Step (ii) -- same as step (i{i) of 0IV-1,
with the addition of (2nc+na)N operations to perform the pre-filteing.

In summary:

0lvy-1: (m+na)N+4m3+nc-m2 {or (m+2na+nc)N+4m3+ncm2)

3

oIv-2: (m+2na+2nc)N+m3+na2(nc+na) (or (m+4na+dnc)N+m +na3)

0IV-3: (m+2na+2nc)N+na2nc (or (m+3na+3nc)N+4m3)

Note also that re-iteration of QIV-1l does not require much computation
since the sample covariances need to be computed only once. I[teration of 0IV-
2 and 0IV-3 is more costly since the data need to he refiltered and some
sample covariances recomputed at each ijteration.

5. NUMERICAL EXAMPLES

In this section we present some selected results of computer simulations
which illustrate the behavior of the 0IV algorithms discussed earlier. Tables
1-10 summarize results based on 100 independent Monte-Carlo runs performed for
each of the test cases described below. Each of the tables contains the means
and standard deviations (as well as mean-squared-errors) of the AR parameter
estimates obtained by applying the MYW, OIV-1, 0IV-2 and 0IV-2 algorithms to
simulated data. The OIV algorithms were used with different values of m and
iterated three times.

Note that 0IV-2 was run for values of m different from m=na. The
asymptotic theory shows that 0IV-2 is optimal only for m=na, not for m > na.
However, in the finite data case we found that increasing m tended to make the
algorithm more robust by reducing the probability of singularity of the matrix
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g which needs to be inverted. In the first two cases the data were the sum of a -
1 second order autoregressive process and white noise:
" ;3 1
B/ .-
.; y{t) = x{(c) + n(t) , (48)
: 5
W where w1
.
;f%
j x(t) = -a x(t-1) - a,x(t-2) + w(t) (49) 3y
» and where w(t) and n{t) are mutually uncorrelated white noise processes whose :3
! variances were chosen to give the desired signal-to-noise ratio )
" (SHNR = Var{x(t)}/Var{n(t)}) . As is well-known, y{t) has an equivalent ARMA i
X (2,2) representation. The zeroes of the MA part can be shown to be farther -
U' away from the unit circle than the zeroes of the AR part. As the SNR ,
L e
;j decreases, the MA zeroes approach the AR zeroes. gi
.
I .-
Y Case 1: Narrowband, high SNR o
1 ")
™ - _ : 0
. A(z) =1 - 1.4z 1 + 0.95z 2 , (zeroes at .975-eﬂ44'1 Y, )
" L)
. SNR = 20 dB, N = 4096 -
. The MA polvnomial of the equivalent ARMA representation of this process is
N . a0 "
3 Clz) = 1 - 0.31552°" + 0.123327% . , lzeroes at .351.e¥363-3%) "~
» b
;f The results are summarized in tables 1 and 2. In this high SNR case the L
! experimental results are very close to the asymptotic bounds. ,
; Case 2: Narrowband, low SNR
o As in case 1, with SNR = 0 dB N
P\ %
b 1 2 44,80
; Clz) = 1 - 1.2095527"+ 0.7268372°°, (zeroes at .353.e%9%%:%") 3
) The results are summarized in tables 3 and 4. L
.:\ !
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‘l‘:' TABLE 1: Experimental and Theoretical Estimstion Accyracy for Case !, Parameter ay
l‘:
e . 2 . 10 @
Mean ¢t std.dev. -1.40¢.0.0531] -1.40£.00530 | -1.40£.00530] -1.40¢.00611
s 3] nse 0.00542 .00541 .00537 .00619
Theoretical std.dev. 0.00533
Yean t std.dev. - -1.40£.00538 | -1.40+.00528| -1.40¢.00537
L Itaration 1 o
- mse - .00549 .00539 .00548
Mean 1 std.dev. - -1.40£.00545 | -1.40£.00535| -1.40%.00534
[+)4 B {teration 2 b
? mse - .00556 .00546 .00545
rﬁ Mean & std.dev. - -1.40£.00544 | -1.40%.00541] -1.40£.00531
[teration 3
nse - .00555 .00552 .00542
% Theoretical std.dev. 0.00532
Mean & std.dev. | -1.40$0.00540] -1.40$£.00547 | -1.40%.00552| -1.40¢.00631
Iteration 1 nse 0.00550 .00558 .00559 00638
- 01v-2
o wean 3 std.dev. | -1,4020.00547 | -1.40%.00538 | -1.40.00544| -1.40£.00632
o lteration 2 | mee 0.00557 ~00550 100551 100639
Mean 1 std.dev. | -1.4020.00530( -1.40£.00540 | -1.40£.00548( -1.40¢.00632
' teration 3 ne 9.00541 00551 .0055% .00639
Theoretical std.dev. 0.00532 - P
Mean 1 std.dev. - -1.402.0135 | -1.40£.0104 | -1.40¢.00607
‘ Iteration 1 wse - L0139 .0106 .00630
Mean z std.dev. - -1.40£.0122 | -1.40£.0103 | -1.40¢.00623
g 3 lteration 2 nse - L0133 .0103 .00633
- hiy-
Mean ¢ std.dev. - -1.4020140 -1.40£.0106 | -1.40¢.00618
& lteration 3 e - .o1a1 .0106 .00629
Theoretical std.dev. 0.0122
¥
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‘i TABLE 2: Experimental and Theoretical Estimation Accuracy for Case 1, Paraseter &
N ] 2 4 10 40
s §
W Mean ¢ std.dev. .9494.00476 | .94912.004792 | .9492$.004974 | .9492¢.005823
Vo Ny use 0.004863 .004882 .005031 .005878
1
A Theoretical std.dev. 0.00508
! Mean : std.dev. - .9490£.004816 | .9490¢.004784 | .9490¢.004792
Y [teration |
‘?'.; nse - .004916 ,004883 .004894
- Mean t std.dev. - -94901.004856 | .94902.004800 | .9490¢.004800
olv-1 Iteration 2
ase - .004955 .004800 .004902
P Mean ¢ std.dev. - .9490¢.004840 | .9490%.004800 | .9490%.004816
N [teration 3
: ;.: mse - .004939 .004899 .004918
W Theoretical std.dev. 0.00506
‘~ Mean t std.dev. | .949£.004981 | .9490£.005058 | .9493:.005164 | .9493:.006057
Iteration 1 mse 0.005096 .005154 .005217 .006101
Vel 01v-2
Mean & std.dev. |.949£0.004966( .9490£.004989 | .94932.005134 | .5493¢.006082
309 Iteration 2 nse 0.005080 005086 .005188 .006126
-
- Mean 3 std.dev. |.94940.004958( .9490¢.005012 | .9493£.005134 | .94932.006044
Ca Iteration 3 e 0.005073 .005109 .005188 .006089
‘ Theoretfcal std.dev. 0.00506 - - -
‘riﬁ Mean 1 std.dev. - .94672,01227 | .9480:.007968 | .9480¢.005559
*-; Iteration 1 e - .01270 .008243 .005912
' Mean t std.dev. - .94932.01229 | .94942.008136 | .9487¢.005587
-,
et 6 1teration 2 nse - .01231 .008155 .005739
1v-3
\) Mean ¢ std.dev. - .9493¢.01285 | .94952,008342 | .948+.005614
(e, Iteration 3 - 01286 .008360 008771
- [Thearetical std.dev. 0.0117 ]
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TABLE 3: Experimental

and Theoretical Estimatfon Accuracy for Case 2,

Parameter 4y

» 2 4 10 40
i Mean : std.dev. 1.72942.597 -.926¢.390 -.811¢£.275 | -.5521¢.1883
L\ nse 2.618 .614 .650 .8686
Theoretical std.dev. 0.0130
Mean ¢ std.dev. - -1.16%.399 -1.16£.307 | -.9154¢.2834
[teration |
(lu - .468 .3es .5614
i Mean t std.dev. - -1.211.397 -1.26£.301 | -1.152£.2800
o1v-1 {teration 2
nse - 442 .33 3740
Mean ¢ std.dev. - -1.22£.391 -1.28¢.288 | -1.266¢.2372
Iteration 3
lnsc - 429 %} 2122
Theoretical std.dev. 0.0127
B LHun t std.dev. | -0.8098£2.269 | -1.27¢.335 -1.294.270 | -1.192¢.2370
[teration 1 nse 2.344 .356 .292 3154
o=z Mean ¢ std.dev. -1.096¢.9489 | -1.30¢.317 ~1.34£.275 | -1.375¢.1276
[teration 2 Pllse .9935 334 .281 .1301
Mean t std.dev. | -0.9804:1.240 | -1.32:.315 ~1.342.346 | -1.405¢.1195
Iteration 3 Pm 1.309 2327 351 1197
.Theorctical std.dev. 0.00674 - - -
Mean ¢t std.dev. - -1.15¢.423 -1.19£.296 | -.9724¢.2806
[teration | nse - .493 .362 5118
Mesn ¢ std.dev. - -1.21£.371 -1.2914.2847 | -1.198¢.2507
[teration 2 mse - 417 .3047 Je22
o r Mean ¢ std.dev. - -1.272.328 -1.3132.2953 | -1.281¢.2029
[teration 3 .nse - 354 .3079 .2351
Theoretical std.dev. L0156
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TABLE 4: Experimental and Theoretical Estimation Accuracy for Case 2, Parameter 1,
L) 2 4 10 40
Mean @ std.dev. .927942.672 .5293¢.3846 4763£.2238 | .24844.1413
MY nse 2.672 .5700 5239 7157
Theoretical std.dev. - 0.0211
Mean ¢ std.dev. - .6980¢.4347 .7543£,2424 | .5358¢.2247
Iteration 1
mse - .5025 J118 4712
i Mean & std.dev. - .7405¢.4275 .8369¢.2354 | .7375¢.2229
0lv-1 lteration 2
mse - 4761 2611 .3079
Mean t std.dev. .- .7541¢,4232 .8563¢.2209 | .8342:.1828
[teration 3
mse - 4664 .2299 .2164
Theoretical std.dev. 0.0194
Mean ¢ std.dev. .7778¢.6499 .8279¢. 3295 .8676t.2074 | .7636%¢.1945
{teration 1 mse 6723 3515 2231 .2694
otv-2 Mean t std.dev. .85741.7826 .8695¢.2966 .92712.142¢ | .9283:.08034
Iteration 2 mse .7880 .3074 .1442 .08321
i Mean t std.dev. .86112.4633 .8934¢.2389 .9440¢.07594{ .9504¢.03850
{teration 3 mse ATL7 .2455 .07618 .03850
‘Theoretical std.dev. 0.0067 - - =
Mean ¢ std.dev. - .7661%.2853 .7815¢.2326 | .58444.2260
Iteration 1 mse - .3395 .2872 .4299
i Mean t std.dev. - .8008¢.3085 .8603¢.21221 .7783:.2025
[teration 2 mse - .3426 L2304 .2655
otv-3 Mean t std.dev. - .83371.2615 .8904£.2102] .3443:.1508
lteratton 3 | mse - 2862 2185 1801
Theoretical std.dev. 0.0157
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s TABLE 5: Experimental and Theoretical Estimation Accuracy for Case 3, Parameter
q » 2 ‘ 10 )
. Mean & std.dev. .3401211.98 | -.96412.4967| -.8148:.2602 | -.3607¢.1214
] use 12.12 7307 .19 1.146
e
v Theoretical std.dev. 0.547
\7
Mean t std.dev. -1.285¢.6152 | -1.452¢.06578 | -1.302%.09564
Iteratfon 1 P s
L6517 . .
1 nse 51 153 2202
o™ Mean ¢ std.dev. -1.320£.6188 | -1.4912.04089 | -1.4782.03514
i, 0fv-1 | Iteration 2
nse .6443 04164 .04164
(¥ Mean ¢ std.dev. -1.333¢.6047 | -1.491%.04180 | -1.483:.03768
-}'. Iteration 3
o nse .6272 .04276 .04137
-
Theoretical std.dev. 0.491
Mean : std.dev. -1.4541.2030 | -1.484¢.04267 | -1.3561.1225
o R 2082 04562 1891
olv-
Mean t std.dev. -1.4752.2055 | -1.4961.05307 | -1.505¢.05697
i Iteration 2 nse .2070 .05325 .0572¢
Mean ¢ std.dev. -1.474$.2226 | -1.506£.05888 | -1.5142.06048
Iteration 3 ase .2243 .05916 .06199
y Theoretical std.dev. 0.0139 - - -
Mean 2 std.dev. | -.9022¢7.139 | -1.4294.2372 | -1.445¢./07617 | -1.152%.1534
u Iteration 1 nse 7.164 2876 .09402 .3800
. Mesr ¢ std.dev. | -1.569¢1.138 | -1.459¢.2476 | -1.466£.06375 | -1.4302.1044
: {teration 2 nse 1.13% .2510 .07213 .1258
o1v-3
) Mean t std.dev. | -1.49220.1007 | -1.4674.2483 | -1.466¢.09093 | -1.4231.089716
- Iteration 3 wee 0.1010 2505 09710 L1166
- Theoretical std.dev. 0.0160
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TABLE 6: Experimental and Theoretical Estimation Accuracy for Case 3, Parameter a,
n 2 4 10 40
Mean t std.dev. -.5767¢9.21 .3323¢.3235 .2114¢.18771 -.07178¢. 1006
M nse 9.299 .4897 5234 77183
Theoretical std.dev. 0.335
Mean t std.dev. .5733£.3739 | .6711£.04926( .5656¢.07516
[teration !
mse .3948 05712 .1540
Mean ¢ std.dev. .59612.3756 .6953£.03093) .5889¢.02725
0lv-1 Iteratton 2 -
nse .3897 .03129 .02942
Mean ¢ std.dev. .6051%.3654 .6956¢.03173] .69561.02699
Iteratfon 3
nse 3778 .03203 .02734
Theoretical std.dev. 0.301
Tuean ¢ std.dev. | -0.7038413.22 | .6674£.1260 | .6835:.03746 | .58941.09895
Iteration 1 ase 13.29 .1302 .04093 1484
on-=2 Mean ¢ std.dev. 0.7563¢.6148 .6845¢.1222 .70032.04660 | .7137£.04116
[teration 2 nge .6173 .1232 04660 .04337
Mean ¢ std.dev. | 0.6952:.08413 | .6912£.1350 | .7095¢.05817 | .73732.06200
Iteration 3 wse 0.08433 .1352 .05893 .07234
Theoretical std.dev. 0.0138
Mean t std.dev. .5626¢,1356 .5610£.05672 | .4685¢.1128
Iteration 1 mse .1407 .06885 2575
Mean ¢ std.dev. .6771¢.1479 .6815£.04338 |.6543¢.06464
{teration 2 ase 1497 .04718 .07915
on-3 Mean 3 std.dev. .69141.1523 | .68192.06095 |.6598.05870
[teration 3 nse .1526 08359 .07113
Theoretical std.dev. 0.0185
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.'_\' TABLE 7: Experimental and Theoretical Estimatfon Acrturacy for Case &, Parameter 3
-‘*
-
[} H 4 10 40
! Mean ¢ std.dev. -1.687¢.007969 -1.687+.005607 | -1.687:.005902 | -1.687¢.006709
[ by | nse .008070 .005721 .005983 .006749
Theoretical std.dev.
'n\‘
- Mean ¢ std.dev. -1.6874.005716 } -1.687¢£.005296 { -1.686¢.009568
L {eeration |
) ase .00582 .005359 .009733
Mean £ std.dev. -1.687$.005716 | -1.687£.005325 | -1.688£.01345
ﬂ 01v-1 | Iteration 2 b
&2‘4 nse .005822 .005387 .01345
' Mean ¢ std.dev. -1.6874.005716 | -1.687¢.005325 | -1.6894.01890
{teration 3 o
~ nse 005822 005387 .01890
\-
P Theoretical std.dev.
Lnean 2 std.dev. | -1.688£.005354{-1.6884.005325 | -1.688+.005607 | -1.688¢.006522
=7 o1v-2 [teration ! nse 005397 008371 008651 006550
v~
= Mean ¢ std.dev. | -1.687$.005552|-1.688+.005468 | -1.688:.00524 | -1.688+.006709
[teration 2 e 005601 005512 .005566 .005736
o
"' Mean : std.dev. | -1.688¢.005383(-1.588¢.005635 | -1.688¢.005552 | -1.688¢.0066663
[teration 3 nse 0.005423 .005677 .005594 .006690
0 Theoretical std.dev. - - -
e
v Mean 2 std.dev. - -1.687¢.01697 | -1.6871.00932¢4 | -1.686¢.006355
Iteration 1 ase .01701 .09392 .006620
q Mean $ std.dev. -n -1.692£.01869 | -1.689£.009072 | -1.687+.005960
‘ o1v-3 [teration 2 nse .01901 009116 .006050
W Mean ¢ std.dev. -1.6922.02019 (-~1.6892.009854 | -1.587¢.006132
LS Iteration 3 nse 02046 009880 .006221
LN .
Theoretical std.dev.
»
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TABLE 8: Experimental and Theoretical Estimation Accuracy for Case &, Parameter » ‘
m 2 4 10 - 40
Mean t std.dev. .9488¢. 007186 .9487+.006604 .9488¢.006789 |.94911.007339 ":
MYW mse .007328 .0067138 .006885 .007399 m
Theoretical std.dev.
Mean t std.dev. .9487¢,006703 .34881.006391 | .94672.1466 }':’ :
lteration | PR PR RINS Spuapp— - cemcncoetssnave )
mse 006836 .006499 .01503 <2
- - -
Mean ¢ std.dev. .9487¢,006691 .3488¢,006373 | .9497¢.01083
Olv-1 lteration 2 cadecona ————
mse .006825 .006480 .31053 A
| S, cmsmsvamencssrar gt mmne - b
Mean : std.dev. .9487:.006674 .9488¢.006336 | .94811.01965 ‘
lteratfon 3 |-ccew-- c—m- | P e --
mse .006808 006445 .01974 -
RSSO NI SV CI R R K
Theoretical std.dev. f']
.- - P P
Mean : std.dev. .9489+,006385 .9489+.006409 .9491+.006616 | .9492+.007155
Iteration ! mse .006478 .006498 .006684 007395 ‘&
191¥-2 —e-n &l
! Mean : std.dev. .9489¢,006445 .9489¢.006415 .9491¢.006593 | .9492¢.007387 ‘.
[teration 2 mse .006544 .00650 005658 .007426
LY
Mean : std.dev. .9490¢,006415 94892006397 .94912.006622 | .9492¢.007387 -_:5'
Tteration 3 nse .006500 006483 .006687 .007426 -~
Theoretical std.dev. e - - 3
Mean t std.dev. .94801.02086 | .34833.01084 |.94794.006935 -
[teration | nse .02095 .01087 .007243
Mean 1 std.dev. .9531$.02286 | 9506101010 | .9489¢.006760 =
[teration 2 mse .02307 01011 006855 =
a(v-3 o
Mean ¢ std.dev. .9536¢2.02681 .95064,01087 | .94884.006845 R
- - - - PR devcoasnvacncnn= - - -
Iteration 3 mse .02705 .01089 .006950 » v
------ e .~ oo )
Thearetical std.dev. l
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bi-diagonalization and a QR algorithm. Solutions corresponding to singular
values less than 10-8 times the largest singualr value were set to zero {in
effect decreasing the assumed rank of the MYW equations and producing the
minimum-norm solution of the underdetermined set of equations).

0fv-1: The algorithm was implemented as described in section 4 and appears to
be quite robust. Since our simulations involved relatively long data records

we did not encounter problems with §m being non-positive definite. Thus, we
did not have to use the procedure described in (43)-(45). 1In fact we computed

%;1/2 by the Levinson-Durbin algorithm, applieg to the first column of
Sp + We used equations (39)(41) to estimate r (1) .

m
0IV-2: The factorization of §v(z) was oerformed by computing the roots
of z"cgv(z) . All the roots outside the unit circle were reflected inside
the unit circle, and the complete set of roots was then used to compute
62(2) . In this case we noticed that the filtering operation (by
G(q~h) = l/ﬁz(q'l)) introduced a transient which needed to be eliminated.
To 1imit the duration of the transient we "contracted" the roots of the

1 -2n¢ b

polynomial C2(z) by replacing 62(2)’1+eiz- +...+E;cz y

52(z/n)=1+€inz'1+...+Eéncn2"cz'2"° , where n = 0.99 . By construction, the

roots of 62(2) have maximum modulus of 1. To eliminate the effects of
transients in (G(q'l)y(t)) , the first 200 samples of the filtered data were
discarded.

0Iv-3: Implementation was very similar to OIV-2.
6. CONCLUSIONS

We presented several multistep implementations of optimal instrumental
variable algorthms for estimating the AR parameters of an ARMA process. These
algorithms were shown to provide asymptotically efficient estimates of the AR
parameters at a modest computational cost, compared to methods such as the
Maximum Likelihood Estimator. The 0IV algorithms are useful in situations
where the MYW method does not provide accurate estimates (e.g., for ARMA
processes with zeroes near the unit circle). The performance of the oroposed

algorithms was illustrated by selected numerical exampies.
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APPENDIX A. THE BEST POSITIVE-DEFINITE APPROXIMATION OF X
N A SYMMETRIC MATRIX W
- !
Let A be a mxm symmetric matrix. Let Ay 2 Ay > ee0 A D its x]
. eigenvalues and vl,...,vm be the corresponding eigenvectors. We have the -,
following result, which is a slight modification of a similar result given in g
1.
A
g Lemma Al. Let be the class of positive definite mxm matrices with k
eigenvalues larger than or equal to a given (small) positive number ¢ . ‘E
N Then by
o8, ; )
- infiA-Br = [(A, -e)? + oo+ (4p-e)? ]2 (A1) §
Be l:
R ‘
where yAy = [trAAT]l/2 = [zt a%]l/2 denotes the Euclidean norm, and i)
-'.:: >‘n+1”"’)‘m are the eigenvshiles of A that are smaller than ¢ , that is ::
-
. )\k > € k=1,...,n
e (A.2)
Y A, S k=n+l,...,m
E k
Furthermore, the infimum is attained for
N 31 -
"
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A 0
B=V . " Ay VT
€
0 't
i “e
with V = {vl,...,vm] .
Proof: We have
m m
1Bl = V(A2 = T (e 0P e lcfj
: . i=1 -i’jg
where cij is the i,j-element of 4
c=vlgy

Clearly C has the same eigenvalues as B. Thus we can write

m m m
2 & . 2 p 2 2
1A=B1"> ¥ (ax;=C,.) > A=C.. "> As=€
ji i) iznﬂk i7¢41) iZn+1(A1 )

where the equalities hold if
cij=0 izj; c1i=x1 i=l,...,n Cii=e i=n+l,...,m
By inserting (A.5) in (A.4) we readily obtain (A.3).

APPENDIX B: A RECURSIVE QR ALGORITHM FOR SOLVING (6)

Let us rewrite equation (6) as

TRV W E YV Y W

(A.3)

(A.4)

(A.5)
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172 N
tn = Sy tél z (t)y(t) (B.3)

Let Lm be factored as

L =0T (B.4)
m mm
where
O = An orthogonal matrix (B.5)
Tm = An upper triangular matrix (B.6)

Then 3“ can be computed by back-substitution from
To =0 2 (8.7)

Consider now the situation for (m+l). Determine first o and g in

1/2 §-1/2 °
8 a
and then
L
-1/2 m
Loet = Smel R T (8.9)
We have
A (8.10)
L = .
m™lodo ]
T
So the problem of factorizing Lm+l reduces to the factorization of ?
Y
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In this last matrix only the last row YT needed to be made zero. The
computations needed are clearly simpler than if the matrix would have been
full. Let 0m+1 be an orthogonal matrix such that

T

- m
= ; 4
Ome1 YT = triangular =T ., , (B.11)
or,
Om 0 —
L = 0 T =0_,,T
0m+1
Finally, we have
N
_a-l/2 T _{'m
t=1 o
The estimate el is computed from
of  ofl ‘*m
- - T _ —
Tmr18me1 “Omet Ame1™ Ome (B.14)
0 1 )
or,
T
- 0 ¢
. m “m
Toe1®me1 = Omel (8.15)
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AN APPROXIMATE MAXIMUM LIKELIHOOD APPROACH TO
ARMA SPECTRAL ESTIMATION

Petre Stoica, Benjamin Friedlander and Torsten SSderster

ABSTRACT

A three-step approximate maximum 1ikelihood method for ARMA spectral
estimation is derived, based on an idea due to Walker. The asymptotic
properties of the proposed estimator are investigated and an exnlicit
expression for its asymptotic covariance matrix is presented. The estimator
provides the asymptotic accuracy of a maximum likelihood technique, at a
modest computational cost.
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1801 Page Mi1l Rd., Palo Alto, CA 94304, USA. T. Soderstrom s with
Department of Automatic Control and Systems Analysis, Institute of Technology,
Uppsala University, P.0. Box 534, S-751 21 Uppsala, Sweden.




1. [INTRODUCTION

Autoregressive moving-average (ARMA) spectral estimation is a topic of
considerable interest in engineering, econometrics, biometrics, statistics and
other areas [1]-{81, [16]1-[22]. Many different methods have been proposed for
estimating the ARMA spectrum, including: (i) Optimization-hased procedures
such as the maximum 1ikelihood (ML) method and various nonlinear least-squares
techniques [1],(3],04],08]1,[21],022]. These methods tend to be
computationally intensive and have inherent difficulties due to possible
convergence to local minima. (ii) Techniques based on the Yule-Walker method
and its many variations [1],[5]-[71,[127,[13], [23]-[25]. These methods
involve the solution of a linear set of equations and do not suffer from
convergence to false minima. However, the accuracy of the estimates may he
poor unless special measures are taken, such as increasing the number of
equations [7],[12], increasing the order of the model [5]-{7] or choosing an
optimal weighting matrix [23]-(25].

In this paper we develop an estimation technique which combines the
computational simplicity of the Yule-Walker based methods with the accuracy of
ML techniques. The proposed estimator is based on an idea due to Walker [10],
[11], involving large-sample approximate ML estimation of the covariances of
the observed ARMA process. These covariance estimates are then used in a
Yule-Walker based procedure to obtain approximate 'L estimates of the ARMA
spectral parameters.

The spectral estimation method proposed here is more general than the
related method in [11] (See also [9], 061, [28]). Walker considered the
‘??: estimation of correlation coefficients instead of covariances and his results
can not be used in a straightforward manner for ARMA spectrum estimation. We
introduce here an estimation technique based on a maximum 1ikelihood approach
similar to, but simpler than, the approach used in [11] (see also [33]). A
large-sample ML method is 1ntroduced?%nd its accuracy properties are
established in a general setting. This aeneral analysis is believed to be
interesting in its own right, and could be used to obtain large-sample ML
estimates for various estiation problem besides the one considered here (see
[25]1). The ARMA spectral estimator derived here is shown to be asymptotically
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efficient. The proof of its efficiency is a key contribution of this paper.

The outline of the paper is as follows: In section 2 we present the
spectral model considered in this paper and discuss some alternative
parametrizations. A large sample approximate solution to a general maximum
1ikel1hood estimation problem is derived in section 3 and its accuracy
properties are discussed. In section 4 we specialize this approximate ML
approach to the ARMA spectral estimation problem. A specific estimation
algorithm is proposed. The asymptotic accuracy prooerties of the proposed
estimator are discussed in section 5, and its asymptotic error covariance fis
compared to the Cramér-Rao lower bound in section 6.

2. THE SPECTRAL MODEL
Consider the following ARMA process of order (na,nc)

ala™h) yit) = cta™l) e(t) s (2.1)

where

e(t) = white noise process with zero mean and variance XZ

-1 -1 -na
Alg ") =1+ g ... tp a ,
-1 -1 -nc
Clg ") =1+ €19 * ...+ 0 )
q-l = unit delay operator (q'ly(t)=y(t-1)).

The following standard assumptions are made:
Al:  A(2) - C(2) =0 = |z| > 1

In other words, the ARMA representation (2.1) is stable and invertible. This
is not a restrictive assumption, cf. the spectral factorization theorem

(29]. We note, however, that there are some cases of interest where Al does

not hold. For example, the sinusoids-in-nofise process can be described by an
ARMA model (2.1) with A(z) = C(z) and A(z) =0 = |z| =1, [1]-[3]. As we
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N
TR shall explain later, the method of this paper does not extend to such
_ “degenerate" ARMA processes. :
: .
S A2: a _+.c _#0 and ({A(z), C(z)} are coprime polynomials. ;
& na nc )
5\ In other words, (na,nc) are the minimal orders of the ARMA mode! (2.1). In
:* the following we assume for simplicity that (na,nc) are given,
W
;f‘ Next we introduce the following notation: "
r‘é‘ , re s E{y(t) y(t-k)} = the covariance of v(t) at lag k, (2.2a) :
PN » ‘
;:' #(z) = [ r 27" the spectral density of y(t). (2.2b) )
) k-’--O t
(a
:;} In (2.2) E(.} denotes the expectation operator and z is a complex variable.
"
1
;Ci It is well known that ]
e , 4
-1
s p(2) =2 ClalClz ) (2.3)
&5 A(z)A(z )
.t§§ Thus, ¢(z) could be parametrized via (a;1, {Cj} and XZ . The statistically
:;‘ efficient estimation of these parameters is not an easy task (even though
2 asymptotically efficient estimates of {a;} can be obtained by using only
b Tinear operations [23]).
o4
a2 :
‘{b In this paper we parametrize 4(z) by the covariances
*‘ {rk » k=0,...,nma+nc} . These covariances uniquely define 6{z) . The N
‘;" sequence {rk} satisfies the well-known Yule-Walker equations: )
oy - A
T, P ATt ot 30 Tkena 0, k > nc + 1. (2.4)
Iq’
1,"'. Introduce the notation
s
e
K Y gfa(q”! -1 T (2.5)
!

where ao = 1 . It then readily follows from (2.1), (2.3) and (2.5) that
\..
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(2.6)

Note that the numerator of (2.6) is a function of {rk, k=0,...,na+nc} . MNext
note that the coefficients {ai, i=l,...,na} can be uniquely determined from

{rk, k=0,...,na+nc} by using (2.4). This is possible since under the
assumptions Al and A2 the matrix

r r 1
nc o« v e . nc+l-na
Mnc+l r
R & T © oo Tnes2-na |, (2.7)
r . . . r
_ nc+na-1 nc

arising from the system of equations (2.4), is nonsingular [11],{23]. This

concludes the proof that 4(z) can be uniquely parametrized by the set of
covariances

8 = [ro, L oseees rna+nc] . (2.8)

Another parametrization of ¢(z) was considered by Walker [11] and Cadzow
{12]. Walker parametrized 4(z) by

ro;a

9 = [ro, Pio oo Moot

1o ana] . (2.9)
For na < 2nc + 1 it can be easily shown that 3(z) can be expressed as a
function of the parameters in (2.9). For na > 2nc + 1, however, this is no
Tonger that obvious. Walker [11] gave a formula expressing 4(z) as a
function of (2.9), which appears to be in error. The simplicity of the

parametrization of ,(z) via (2.8) was one of the reasons for preferring (2.8)
to (2.9).

The parametrization of 4{z) used by Cadzow [i2] (see also [13]) is shown
in [33, Appendix D] to be a special case of (2.9), and is valid only for
nc » na (compared to the constraint na < 2nc + 1 mentioned above). Due %o

A B A




R0 this constraint it cannot be used for arbitrary ARMA processes.

Finally note that replacing {rk, k=0,...,na+nc} in (2.4) - (2.6) by some
(consistent) estimate will produce a (consistent) estimate of the spectral
density, which is not gquaranteed to be nonnegative on the unit circle. The
same is true when using (2.9) to parametrize ¢(z) . This problem is
discussed in more detafl in [30](31], where a remedy is proposed.

3. A MAXIMUM LIKELIHOOD ESTIMATION PROBLEM AND ITS LARGE-SAMPLE SOLUTION

In the next section we will discuss an approximate ML method for

.$~ﬁ estimating the covariances {rk » k=0 ,..., na+nc} characterizing the ARMA
f tf process (2.1). In this section we present in a general setting the basic
My ideas behind that method. As was mentioned earlier, our approach follows that
55?: of Walker [11], who parametrized the ARMA process via (2.9). To estimate these
;E?ﬁ parameters (more precisely, the parameters {rllro,...,rnc/ro,al,...,ana})
::}3 he considered a more complicated approach than the one presented here. We

:, formalized the basic ideas behind Walker's aporoach in [33, Appendix E]l. We
SOy note that the approaches presented in this section and in [33, Appendix E] may
}ﬁ%{ be useful in deriving new estimators for other estimation problems besides the
il one treated here, see e.g. [25].

i
Q?; Let X be a random m-vector which is completely determined from the

fﬁg available N data samples. Let ¢ denote the ng-vector of unknown parameters
‘1§ﬁ to be estimated. Assume that for N + = the distribution of X is completely
s determined by § . Furthermore, assume that
oy

ti‘:;} m o s po,m (3.1a)
552& where

o8 X = ? , (3.1b)
- 0

Lot
-ﬁ;ﬁ and where the covariance matrix W (assumed to be nonsingular) mav depend on

; :' 9 . Finally, assume that an estimate ﬁ of W, which is such that
s
R
g 5
D
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3
D \::
%i |Q-N| = 0(1//?1')T , can be calculated from the available data. Under these
" conditions we will derive a simple large sample approximate ML estimate of
': ” 8 .
2
SN Since we consider the large-sample case, assumption (3.la) is not too

restrictive. Many statistics have an asymptotically Gaussian distribution
i according to various central limit theorems. The choice of X so as to fulfil

)
\ (3.1b) is the critical point in applying the approach of this section to a
[ :
v specific estimation problem.
0
™ The asymptotic log-1ikelihood function of X is given by
:: A
‘. L(s) = - 3 1n2r - 3 1n det W - § (x-0)TWix-%) . (3.2)
3o
-

The ML estimate of 3 obtained from a “sample" X drawn from the asymptotic
distribution (3.1) is, therefore, the solution of the following equation

) ak(e) = 13 -1
i v -‘2"_56_[1n det W] “’N[Ine, O]N (X=X)

*i . [ Tl = 1

X (X=X) " Fg—{X-X)

-k N 1

> "2 = =0, (3.3)
| (x-%)" 2 (xX)

A 36

3 i ne ]

M

'-1 e where 91. is the i-th component of g , and where [ denotes the

< . ng x ng unity matrix. Let us assume that (3.3) has a solution with respect |
; to 8 , say o . Under certain regularity conditions the M. estimate is |

consistent and |; -] = 0(1//N) . (We denote both the true and the unknown

2 I KA 8ASSS
(RPN

R tWe will use throughout the paper the notation O0(c) to denote a random

%: v variable with standard deviation Kc, where ¢ is sufficiently small and where
‘ . K is a (finite) constant independent of ¢ . An estimate ;l satisfyina

> { |W-W| = 0(1/y¥) s sometimes called "root N consistent."

&

b
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oy
L
.'.. % parameter vectors by the same symbol 3 ). DNetermination of ; will in
‘ general be a highly intractable problem. In the following we derive an
{"‘: approximation of order 1/N of 3 . For simplicity we assume that m < = .
-5-.
o However, similar results hold if m » = and m/N » 0 (as m,N » =) at an
*:" "appropriate rate." The rate at which m should tend to infinity is not easy
' . to determine, and will be problem dependent [23]-[24][37].
WA
:-‘_‘:i For N large enough it follows from (3.1) that
:'V'
o » 3 3 9 -3 0
L “lo |7 Xl )t 0 = 0(LVN)
"-}",."-',
3 i
o
» Thus we can rewrite (3.3) as,
- 4""
3 t.
S ) ) )
&S 1 ai(e) _ - -1 _I _
B4 TS = (1 OIW° x - | +o0(i/mM)=0. (3.4)
U~ O_]

{
E_ Mext we partition W and X as
1 le }ne
/- W =

T

e no
N X
X =
s b4
~ .
_:f:: A standard result on the inverse of partitioned matrices gives
. ::f. |— -1
g -1 Q -1 \ p l T -1 -1

i 1 = ! 4 3 (- .
S " |1:| o2 (O 11+l i r [ UntWighggiip) oL Wippp] - (3460
::: — "2z "2
AR
:-f:-:
{" It follows from (3.4)-(3.5) that an asymptotic approximation of order 1/M of

3 is given by

o R AR s
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v,

= |'1
Q =X - wlzdzzz . (3'7)

Now 8 is not directly implementable since wlz and sz will generally depend

i on 9 . However, since z = 0(1//“')~, see (3.1), we can replace N‘i in

s (3.7) by their consistent estimates ”13 without affecting the order of the
!! approximation. We can summarize the discussion above by the following lemma.
rd

. Lemma 3.1

Consider ; given by
5 = x - WeaWolz (3.8)
= X = WpHa2 .

- where «x, le, sz and z are defined by (3.5). Then g is a simple large-
sample approximate (of order 1/N) solution of (3.3).

Since |5-§] = Oll/N), g has for N » = the same distribution as the M
Ii estimate :E . In view of the asymptotic (for m » = ) efficiency of the ML
estimate 3 we expect that under certain regularity conditions the covariance
- matrix of the distribution of 5 will tend to the Cram;r-Rao lower bound as
LS m > = . However this is only a conjecture. To prove it in specific cases is
a challenging problem; see section 6 for the analysis of a particular case.

In the following we establish some general accuracy properties of g .

;“ It follows from (3.1), (3.7) and (3.8) that
- dist
'S /N (8-9) 'N—-P./V(O, Pm) ’ (3.9a)
54 > o
where
¥ iy
Pm = wll'ulzwzz wlz Y (3.9b)

and where, for the convenience of the discussion, we stress by notation the
dependence of the covariance matrix (3.9b) on m.

M

The estimation error (;-3) can be interpreted as being the residuals of

Py ._ﬂ

C

o I S S A R R S S S A A A S e




e

the asymptotic regression of x-9 on z. Consider the following regression
problem: determine M such that

e
APy N

QM) & NE[[(x-8)-Mz][(x-8)-Mz]} > Q(M) , (3.10)

- am g an
2oy R

for any ne x (m-ng) matrix M. Since we have

5 8]

T

-1 -1.7T -1 T

" QUMY = (MoWypHpp ) Wgp (M-H1pWap) + (M) -WipHoo¥1) - (3.11)
S
1) . -1 T : X

* ::d since ”11‘“12”22“12 and wzz are positive definite matrices, it follows

at

"
§~ - 1
) = - .

. M = Wipkps - (3.12)
33.‘ and
(

(X ~

QM) = Pn (3.13)
»{:
$S According to the interpretation above we expect that the accuracy will
increase when m increases since the number of "degrees of freedom" in the

.
ri regression problem (3.10) increases with m. It can in fact be shown by
5 straightforward algebraic calculations that
)

X -
2 Ph2 P for mo>m . (3.14)
e
o
05: We state this result in the following theorem.
i Theorem 3.1. Consider the matrices P and P~ defined by (3.9b) under the
e assumption that W, is fnvertible. Assume that
r+) 2= [I 0,0z, (3.15)
K
&3 where z corresponds to P, and ;'to ﬂ; . Then the order relation (3.14)
Ao holds true.
'?.
W .
}t Proof: The neste<d structure (3.15) induces a similar structure on the ;

matrices Wy, and Wyp, say
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Mg = (¥ i1
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_ 2 %
W =
22 T
S, S
Thus
P = Wy Wiy Wl W = Wy - (W 5, ] -
= = WyyWip Map Mgt My - [Nz Sy
.
-1 W
\ I NonS ) 12
-1 22°2 T, -1
o) telt Oty B Myl s
-1 . 4T
where
T -1 .-l

Since sz is positive definite by assumption, S must also be positive
definite and the assertion of the theorem follows. We note from (3.16) that
the equality

=P, (3.17)
m
is equivalent to
S, = W, Wools,. (3.18)
1 12 "22 "2

Since Pm > Pm+1 >0 for all m, it follows that the sequence of matrices
{Pm} will have a 1imit when m » «» , which we denote by Pa . According to
the interpretation (3.13) of Pm the "rate of convergence" of P to P,. will
be faster than that of the covariance matrix corresponding to any other
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estimator of o of the form x + Mz, for some matrix M. Also, according to the
discussion following (3.8) we expect that

P = P (3019)

where Pen denotes the asymptotic Cram;r-Rao lower bound for consistent
estimators of 8 . This conjecture is analyzed for the specific case of the
ARMA estimation problem in section 6.

Finally, note that the (consistent) estimate g3 , (3.8), could be
introduced independently of the M. interpretation. For example, it could be
introduced using the (asymptotic) regression interpretation (3.10)-(3.13).

The accuracy properties proven above {(3.9),(3.13) and (3.14)) do not depend
on the M. interpretation of ; . The property (3.19) becomes, however,
apparent only in relation to such an interpretation. Yet this property has to
be proven in each particular case being considered. The apnlication of the
maximum 1ikelihood principie in this section is non-standard. The 1ikelihood
function used here is valid only for N » = . Moreover, it is not known
whether the 1ikelihood function is valid for m » » . Thus, we can not rely
on the standard properties of the ML estimate to prove (3.19). Note that for
the specific ARMA problem considered in the next section we show that (3.19)
holds for Gaussian data, but not necessarily for other distributions. In view

of the discussion above, this should not be viewed as a contradiction to the
ML-based interpretation of g .

4. LARGE-SAMPLE MAXIMUM LIKELIHOOD ARMA SPECTRAL ESTIMATION

In this section we consider the specific problem of estimating the
spectral density of an ARMA process (2.1). This problem reduces to estimating
the covariance parameters g ¢ [ro, seeny rna+nc] of the ARMA process, see
(2.4) - (2.6). We will use the approximate ML approach of the previous
section to estimate o from a sample {(v(1l)},...,y(N)} . We define the

unbiased sample covariances

N-k

" ‘ﬁ Ioy(t) y(ek) k =0,1,2,...,
3 t=1 (4.1)
) Pt Ty
i\ H
)

B BN s =0 2= 4.l

CE 553
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Next we introduce a consistent estimate of the AR parameters {ai} nbtained by
the least-squares solution of the following overdetermined Yule-Walker system
of equations

Tne t ottt rnc+1-na Tne+l
: : as- : , K > na#nc, (4.2)
"k-1 * * * "K-na "
T

where ; = [;1 cee ;na] . That a given by (4.2) is a consistent estimate of
a = [al, ceey ana] follows readily from (2.4) and from the convergence of
the sample covariances to the theoretical covariances {rk} [14],023].
Note that the sample covariance matrix in (4.2) has full rank, at least for
sufficiently large N [23]. It may be advisable to take K in (4.2) to be much
larger than na+nc in order to improve the accuracy of a [(7]. 1t is not
generally true that increasing K improves the accuracy of ; [23]. However,
extensive simylations [7],[12] have shown that this is in general the case

when the sequence {Irkl} is decreasing slowly.

Next we define the statistic X which will constitute the "data" for our
M. estimation problem:

X Xq z
X = , X =| 2 , 2= 1|2 , (4.3a)
z ina+nc zm-na-nc-l
where
Xy =Py i=0,...,na+nc ,
na na (4.3b)
z, = ) a, aj rnc+na+k-1-j , k=l,...,m-na-nc-1 .

i=0 §=0

We assume thatm > na + nc + 1. The specific form above of the vector z leads
to a relatively simple expression for the covariance matrix of the asymptotic
distribution of X (see balow). Other choices of z are possible but we belijeve
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(4.3b) is the most convenient choice. This choice of z was introduced by a
Walker [11]. o
sy
* ‘
K It is shown in Appendix A that X in (4.3) is asymptotically normally 'C'%
p) distributed, i.e.,
' 3
. _ :
a AN J5E g0, W), (4.42)
¥ where %
'; 4
8 .
XS 0 e
X =| ¢ g 4.4 7
b "= | Taatne ’ (450 'ﬂ‘
B e
g and ::
D Z
. 1 M2 |hre .
‘e :
‘. NT w ] ne é na + nC + 1 . 3 t
:. | "2 22
¥, -

>
3
@

.‘. [N ]' = E{[V(t‘i) +v(t+i)]v(t-j)} 1’j = 0,...,"9-1 ’ (4.4C) Q';:

. 11 'Ij :‘D‘

‘b CZ( -1)

W vit) = x Al e(t), -

g AT(q™") o

.

8 2, - a2 by e '

G [iyplyy = E(AZ (a7 ave-11A%(q M v( e 4

N4 R nc k.2 (4.4d)

. = the coefficient of z"‘j in [ § bk r 1% 1.=1,...,m-ne T

N k=-nc {-,

!

K 2, -1 ]

R [N1215k= E{A"(q ")[v(t+na+nc-§) + v(tena+nc+j)Iv(t-k)} :{:

) (4.40) w

‘ = ak"'j * ak'j ’ j=0""rne‘1o k=1,...,m-ne ’

b 4

nc L'.

2 h 5y z-k]2

) a, = the coefficient of z5 in the long division of z-(NC*na) ka-nc _ N
s a%(zh 3

It is not difficult to see that
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] 0 for k > nc-na+j . (4.4F)

a5
This implies that [wlzl K= 0 for k > 2nc. Note also that W, is a banded
Toeplitz matrix with the band width equal to 2nc + 1.

In (4.4d) and (4.4e) we have indicated simple ways for evaluating the
covariance matrices Wyp and Wyp. Note that only these two matrices are of
interest in calculating the estimate, cf. (3.7). The matrices

wlz and sz depend only on {ai, i=l, ..., na} and
{rk, k=0,...,na+nc} .Thus, consistent estimates of “12 and wzz can be
obtained by using in (4.4) the consistent estimates of (ai} and {rk} given

by (4.1) and (4.2).

It follows from the discussion above that X (4.3), satisfies the basic
conditions used to develop the approximate M. approach of section 3. Thus, a
large-sample approximation of the ML estimate of 9 is given by (lemma 3.1),

~ ~ Al
-

The w22 matrix is positive definite for any value of m (finite or infinite)
[271[33]. More precisely, it can be shown that

14 (4.6)

4 i
Apin(Nop) > A i:flc(e “y

Aray (Mpp) < A" szplC(e1“)|4 (4.7)
where Amin(wzz) and *max(”zz) are the smallest and largest eigenvalues of the
matrix wzz , respectively. The equalities in both (4.6) and (4.7) hold in
the 1imit as m » «» [33, Appendix F]. Due to assumption Al we have

wzz > 0 for all m. Note, however, that if C(z) has zeroes near the unit
circle then the condition number of wZZ.Wi]1 be large for large va..es of
m. A similar situation will occur for wzz . Some numerical problems may

arise in such a case in the implementation of the estimator defined by (4.5).

The algorithm for determining a large-sample ML estimate of ,(z) based
on (4.5) can be summarized as follows:

14
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?ﬁ Step 1. Compute the sample covariances {;k} (4.1), and the initial estimate

R a (4.2). s
;is _

#ﬁ Step 2 Use {r }, a in {2.5) to obtain initia1 estimates {bk} and insert {1
%ﬁ them in (4. 3) and (4.4) to compute x, z, P and ”22 . Compute improved ¥y

estimates {rk,kao, ..., na+nc} of the covariances by using (4.5).

by

% Step 3. Use {;k’ k=0: «ee, Natnc} in (2.4) with k=nc+1,:..,nc+na, to obtain ;
;H an improved estimate a3 of the AR parameters. Then use a and i
2 {;k' k=0, ..., na+nc} in (2.6) to obtain the estimate ;(z) of the ARMA "
" spectral density.

o E
)Q The calculations in steps 2 and 3 of the above algorithm can be repeated -
;g; using the improved estimates {;i} and {;i} obtained in step 3. For large N Ea
&- this will have only a slight effect on the estimates. However, in the small

and medium sample cases the iteration of steps 2 and 3 may have a beneficial
effect on estimation accuracy.

;} & ’...
OIS e

The computational aspects related to the algorithm above are discussed in

,; detail in [32]. Here we note only that the facts that w22 is a handed >
ﬁ' positive definite matrix and that w12 has few non-zero elements can be §§
k@ exploited to get a computationally efficient algorithm (requiring proportional

J to m arithmetic operations) for implementing steps 2-3.

o

EE Some general accuracy properties of the estimates of the type given in

equation (4.5) have been derived in section 3. Analogous properties clearly
hold for the estimates a and ¢(z) obtained by the aigorithm above. A more

L detailed accuracy analysis of 6 and a will be presented later.

‘_:‘L

;j We conclude this section by noting that Walker [11], who used a somewhat
B ny{

more cumbersome M. approach [33, Appendix E] arrived at estimates of the

' correlations {rk/ro, k=1, ..., nc} and of the AR parameters {ai} that are
Ry similar to ours. Since Walker considered the estimation of {rk/ro} instead
.§ of {rk}, our estimates and those of Walker cannot be easily compared.
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(w.,] 0 for k > nc-na+j . (4.4F)

Wil =

This implies that [wlz].k = 0 for k > 2nc. Note also that Wp, is a banded

Et{ Toeplitz matrix with the band width equal to 2nc + 1.

In (4.4d) and (4.4e) we have indicated simple ways for evaluating the
-~ covariance matrices Wyp and Wpo. Note that only these two matrices are of
35 interest in calculating the estimate, cf. (3.7). The matrices
N Wy, and W,, depend only on {a,, is1, ..., na} and

{rk, k=0,...,na+nc} .Thus, consistent estimates of le and '22 can de
;& obtained by using in (4.4) the consistent estimates of {a,: and  r 1 ver
by (4.1) and (4.2).

Tl
b

It follows from the discussion above that X (4.3), satisfies the nas:
3 conditions used to develop the approximate M. approach of section 3. “nys
3? large-sample approximation of the M. estimate of 39 fs given by (lemma ..

!

3= ox - ‘4.3
8 X wlz wzzz

-

The w22 matrix is positive definite for any value of m (finite or infinite)
£27](33]. More precisely, it can be shown that

P

4 . iw, 4
.. *min(wzz) >\ 1:f|C(e “ (4.6)
4 i 4
P Amax¥a2) € 2 SED\C(e “1 (4.7)
-
o where Amin(wzz) and Amax(wzz) are the smallest and largest eigenvalues of the

matrix sz , respectively. The equalities in both (4.6) and (4.7) hold in
the 1imit as m » » [33, Appendix F]. Due to assumption Al we have

i: w22 > 0 for all m. MNote, however, that if C(z) has zeroes near the unit
circle then the condition number of wZZ will be large for large values of
3- m. A similar situation will occur for w22 . Some numerical problems may

arise in such a case in the implementation of the estimator defined by (4.5).

The algorithm for determining a large-sample ML estimate of 4{z) based
. on {(4.5) can be summarized as follows:
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% ;
y{ Step 1. Compute the sample covariances {re} (4.1), and the initial estimate .
’ a (4.2). j
2 Step 2 Use {r }, a in (2.5) to obtain initial estimates (b} and fnsert :ﬂ
7 them in (4. 3) and (4.4) to compute X, z, W.. and W Compute fmproved -
8 12 22 °
\ estimates {rk’k =0, ..., na+nc} of the covariances by using (4.5). ;¥
‘; Step 3. Use (;k’ k=0, ..., na+nc} in (2.4) with k=nc+l,...,nc+na, to obtain .
‘,j an improved estimate ; of the AR parameters. Then use ; and Ei
' {res k=0, ..., na+nc} in (2.6) to obtain the estimate ;(z) of the ARMA
. spectral density. Ei
-‘ ‘n

- The calculations in steps 2 and 3 of the above algorithm can be repeated
’ using the improved estimates {ry} and {a;} obtained in step 3. For large N
this will have only a slight effect on the estimates. However, in the small

i% and medium sample cases the iteration of steps 2 and 3 may have a beneficial
. effect on estimation accuracy.
The computational aspects related to the algorithm above are discussed in

o detail in [32]. Here we note only that the facts that Wy, Ts 2 handed
:f positive definite matrix and that le has few non-zero elements can be
f: exploited to get a computationally efficient algorithm (requiring proportional
J to m arithmetic operations) for implementing steps 2-3. ;ﬂ
2
=j§ Some general accuracy properties of the estimates of the type given in j;
"3 equation (4.5) have been derived in section 3. Analogous properties clearly -
L hold for the estimates ; and ;(z) obtained by the algorithm above. A more .
{ij detailed accuracy analysis of 5 and ; will be presented later. ;1
::{: -
5{3 We conclude this section by noting that Walker [11], who used a somewhat :{
;‘ more cumbersome M. approach [33, Appendix E] arrived at estimates of the
;r; correlations {rk/ro, k=1, ..., nc} and of the AR parameters {ai} that are 21

. similar to ours. Since Walker considered the estimation of {rk/ro} instead
% of {rk}, our estimates and those of Walker cannot be easily compared. J
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5. ASYMPTOTIC ACCURACY PROPERTIES

In this section we derive explicit expressions for the asymptotic

-~ -

covariance matrices of g and a . The asymptotic properties of ;(z) ¢an be
analyzed similarly (pointwise).

It follows from the general analysis in section 3 that as N + = the
covariance matrix of the normalized estimation error /N(s - 8), is given by

5 1T
Pn = W1y = Wi¥ap Yy (5.1)

where the matrices Nij are defined by (4.4). Furthermore, according to
Theorem 3.1 we have

P: >, for m>m . (5.2)

A consequence of (5.2) is that the sequence of positive definite matrices

{P } has a 1imit when m » = , which we denote P . An explicit expression
for ps is given in the following lemma.
Lemma 5.1 Consider the covariance matrix P: defined by (5.1), (4.4). Then

PO = wll -an (5.3&)

where 2 is a ng x 2nc matrix whose (i,j)-element is given by

- 2, -1 : 1 .
;= E{CT(q ")[e(t-1) + e(t+i))] ZETE:T; e(t-nc-na-jl} , (5.3b)
i=0,...,n8-1, j =1,...,2nc .
Proof:

Let

. 1
0o ! c?(z)

ni--1 g
¥
..

12

_ : (hg = 1) . (5.4)
J

It is shown in [10] that for m » = the (i,j)-element of wé% is given by
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) m1g(i,3)

-1 .
Tim (W, ] = =% ) h, _hy i,j » 1. (5.5) s
Moo | 22143 A4 re1 i-r jer ?ﬁ
Thus, we can write n
vim ot = LoyTy (5.6a)
22 4 ~—
Mo A =
Nt
where U is the following infinite-dimensional matrix
h0 hl h2 h3 N
U= h0 h1 h2 . e e 5 o) -
.6b
h0 hl .
0 .t T
L . C
~ Since e
.,
=1
v(t-1) v(t-1) e{t-1) -
vit-2) | _ 1 vit-2) | A e(t-2)
the assertion of the lemma readily follows from (4.4e) and (5.1). MNote that -
the expression in {5.3b) becomes zero if j > 2nc . N
<
In practice m cannot be too large. The computational burden increases in 53
proportion to m. Also, m must be only a fraction of the sample size N for
statistical “"stability". The rate of convergence of P; to its limiting lower ;?
bound pi given by (5.3) is, therefore, of interest. ODue to the particular "~ ‘
structure of Wy (4.4f), the rate of convergence of p: to pd is determined e
essentially by the rate at which the left-top 2n¢x2nc-block of N;; converges S
as m » = . The rate of convergence of the entries in that block depends -
strongly on the location of the zeros of C(z), see (5.4)-(5.6). The closer iq
these zeros are to the unit circle, the slower is the convergence rate. The
parameters {ai} have a much smaller influence on the convergence rate of 4
p; , via the elements nf the non-zero block of wlZ . -
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We conclude from the discussion above that in the case C(z) has zeros
well inside the unit circle we can get resonably close to the lower bound

Pi for relatively small values of m. If C(z) has zeros close to the unit
circle we may need to consider much larger values of m. This will be possible

only if we have a long sample at hand; otherwise we cannot attain the maximum

accuracy corresponding to P . Reca11 also that for m large and C(z) with
zeros close to the unit c1rc1e the ”22 matrix is 1ikely to be 11~
conditioned.

Next we turn to the calculation of the asymptotic covariance matrix of
a . We introduce the vector

- on - T
r = [racapss s Tncenal (5.7)

and the matrix R as defined by (2.7) with {ry) replaced by {ri} . The
estimate a can be written as a function of g as follows

; = -R-l; . (5.8)

We can now state the following result.

Lemma 5.2: Cons1der the estimate a , (5.8), where {ri} are given by
(4.5). Let p denote the asymptotic covariance matrix of /N(a-a) Then

a -1, 4T T
Pm = R {Qqy - Qgp Wy Q)R (5.9)

where wzz is given by (4.4d), R by (2.7), and
(03155 = E(A(QTV(t-1) ALQ™ W(t=d)} 5 fud=l,.enina (5.10)

(012145 = E(A%(™) vit-) Ale™) v(tena-)} Loona

i=
j=1,...,m-ng .

Furthermore,

PR>Pl ., for mam . (5.11)
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Finally, the limit covariance matrix P: = lim P; exists and is given by

Moo

2. E

pd = R'l(O11 -t R,

i
I'..-

%

where a
[rly; = E[C2(a]) e(t-1) L e(tena=i)l ,  i=1,...., na, (5.12)
J Alq ") j=l,...., 2nc. : ;q
e

Proof:

0

See Appendix B.

B

As stated earlier, our estimate a may differ from Walker's estimate for
finite samples. A careful comparison of P; with the expression given by
Walker for the covariance matrix of the estimate in [11] shows that they are
identical. Thus, the two estimates have the same asymptotic accuracy.

'E; 9

CE

NMote that the first term in (5.9), Q11 'T is the covar1ance matrix
corresponding to the standard Yule-Walker estimate of a (1.e., a obtained
from (4.2) for K = na+nc), see [23]. Thus, the second term in (5.9) shows the

k5

improvement in asymptotic accuracy that results by using {Fk} instead of ;3
{Fk} in the basic Yule-Walker equations.

N
In the ne<t section we compare the asymptotic accuracy of our estimates \

to the Cramer-Rao lower bound. In the course of the analysis we also obtain
an interesting result relating the covariance matrix of a , to the covariance ?3

matrix of the optimal Yule-Walker estimate recently proposed in [23][24].

&
6. COMPARISON WITH THE CRAMER-RAO LOWER BOUND Q?
s

The following conjecture was introduced previously:

. pS
ps - PCR ’ (6-1)
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where Pz ts given by (5.3) and PgR is the CRLB for the covariance matrix of
any consistent estimator of g . In the sequel we present a proof of (6.1)
for the general ARMA case, using some results presented in [34], [35]. The
asymptotic (for N, m » =) efficiency of the approximate M. estimators of the
type considered here was conjectured by Walker [11] and later by others
[161[28], but no proof was provided, except in some special cases
[9],037).Explicit expressions for PgR are known [34][36]. However, a direct
algebraic proof of the equivalence between Pi in (5.3) and p2_ appears to be

CR
difficult. Instead we consider the following result introduced in [35].

Theorem 6.1

-

Let & be the following estimate of the ARMA parameter vector g (2.8),
6 = argmin V(g), (6.2a)
8

V(e) = n

Tt (6.2b)

where

= m - T
n= {0 Tor s TmerTmet] o (6.2¢c)
& 1im N cov{n} . (6.2d)
N+
and where m > na+nc+l . Define
P & 1im N cov{a} . (6.3)
Noa
Then, under the Gaussian hypothesis
7 = od
1im Pm = PCR . (6.4)

Moo

Proof: See [35].

It s also shown in [35] that 3; is an asvmptotic lower bound on the
covariance matrix of any estimator based on the m sample covariances
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Next we state and prove the following lemma.

Lemma 6.1:

-

The estimate 5 as defined by (4.5) and the estimate g defined by (6.2a)
are asymptotically equivalent.

Proof: Let

= . = T
Z = Eii ces zm-na-nc-1] (6.5a)

where {Z | are defined by (A.16). Also define

where x is given by (4.3a). Then

(6.5¢)

where i: n are defined in (4.4b) and (6.2c), and * denotes entries whose
values are not important for this proof. Since the matrix V is nonsingular

and non-random it follows that

T lix

8 Tl s x - 0T HED (6.6)

V(a)

where W = 1im N cov(X X) is defined in (4.4) (see aiso Appendix A). Note
that we denofe both the true and the unknown parameter vectors by the true

)
) symbol 9 . The equality (6.6) holds for all admissible values of 9 . Thus
% we have
A
‘s
3
l'
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Next note that o is a root N consistent estimate: Ié-el = o(1//N) (see
(6.3)). Therefore

(i-?)|§ = o(1//N) (6.8)

Furthermore, it follows exactly as in (A.l), (A.2) that

=T =T -
S—H: = [0 %g—' ] = o(1//N) (6.9)
8 8

which implies that

X|e = X|. + -§-e-|e (8 - 8) + o(1/N) = X + o(F) (6.10)

[ =g

where 5 corresponds to, {;i} (note that X i|5 , see (4.3)). From (6.7)
(6.9) it follows that g satisfies the following equation

~
~

T olix - (8 ]) + o) = 0 (6.11)

Since 5 is the approximate (of order 1/N) solution of an equation with
identical dominant term (see (3.4)), we conclude that ¢ - o = o{1/N) , and
the proof is finished.

From Lemma 6.1 we conclude that P; = Pm . Thus, 5 is a minimum
variance estimator in the class of estimators based on m sample covariances

{rgseeesPp_y} - Furthermore, from theorem 6.1 it follows that

03 L o8
1im Pm PCR (6.12)

M-+oo

Thus, 9 is an asymptotically (for N, m+ = ) efficient estimator. An

22




immediate consequence of this fact is that both 5 and ;(z) (are
asymptotically efficient estimators. Of less importance is the fact that the
above results provide another way for introducing the estimator 9 (as a

large-cample approximation of g ).

In the remaining part of this section we show that p; is equal to the
asymptotic covariance of the optimal YW estimator of a, introduced in [23].
Since the optimal YW estimator is asymptotically efficient [23], this equality
provides an alternative proof of the asymptotic efficiency of 5 . The
equivalence between the covariance matrices of these two estimators fs also
interesting in its own right.

Let us introduce the matrices Rk (k x na) and Sk(k x k), for k > na ,

, , f=1,...,k
[Rliy = E{y(tenc-i)y(t-j)}] j=1.....na .
(6.13)
[Sely = ARl yle-Nel@ y(e-)} . 13 = Lok,
and EK defined as
S ol o=ly 1=l
P = (R S Rk) . (6.14)

The inverse matrix in (6.14) exists for any k > na [23].

The following resulit relating P; to ﬁk (for a certain k) is essential

a _ .a
in proving that PCR = P’ .

Theorem 6.2: Consider the covariance matrices P; and ﬁk defined by (5.9)-
(5.10) and (6.13)-(6.14), respectively. Let m>na +nc + 1 . Then

P2 = p

=P el (6.15)

Proof: See Appendix C.
Note that Ek {(k » na) 1is the asymptotic covariance matrix of the
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optimally weighted overdetermined Yule-Walker estimator (OWOYWE) (or the
asymptotically equivalent optimal IV estimate) recently introduced in [23].
Thus, ; given by (5.8) and the OWOYWE of [23] based on menc-1 instruments
have the same accuracy, as N » » . These two estimates seem, in fact, to be
asymptotically identical; however, in the finite-sample case they will in
general have different values.

The reason for the usefulness of equaiity (6.15) {is that the convergence
of Pk as Kk » » was studied in detail in [23]. In particular it was shown
there that under the Gaussian hypothesis

P, »Pog » A5 K- (6.16)
An explicit exprefsion for pER was also given in [23]. The “rate of
convergence" of pk to PER was also studied in [23] by means of some
numerical examples as well as analytical calculations. The results reported
there on the convergence rate in (6.16) support the statements we already made
in section 5: (i) the C-parameters have a much stronger influence on the
convergence rate than the A-parameters; (ii) the convergence is slow when
C(z) has zeros close to the unit circle.

7. CONCLUSIONS

We developed a technique for estimating the spectral parameters of an
ARMA process from a set of sample covariances. The proposed algorithm
provides consistent parameter estimates. Explicit expressions were derived
for the asymptotic covariances of the parameter estimates. [t was shown that
the estimates of the ARMA parameters obtained by this technique are
asymptotically efficient.

The computational requirements of the proposed technique are of the same
order as those of the modified Yule-Walker estimator. A more detailed
discussion of the computational and implementation aspects of this algorithm
and a numerical performance evaluation will be presented in [32].
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APPENDIX A: PROOF OF EQUATION (4.4) Eg
W
Let us consider the following Taylor series expansion of zZ, {4.3b) il
(viewed as a function of 3 ), around a: -
- . mna az,(3) . 3
zk(a) =z ¢+ ~ L (as-as) + 0(1I/N) , (A.1a)
s=1 ;a, 'a=a 5
3
where R
~ , Mana - o
Zk - 2 z aiaj rnc+na+k‘i"j ’ k > 1 Py (A-lb) ‘“\
i=0 j=0 )
and -
a
az, (a) na
k o ~ k P 1

— z 2 . agr ’ ’ (A.1lc) -
a, a=a j=0 3" (nc+na+k-s)- l<s<na. ‘.
According to the Yule-Walker equations (2.4) the derivative (A.lc) is :5

O(1//Nj . It then follows from (A.la) that
g
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| . 2, () = 7+ 0L/ . (A.2)

Thus, the random variables 2, and -z-k have the same -asymptotic behavior, and
in the following calculations we will consider

0

zk instead of Zy .

=1

Under the assumptions imposed on the ARMA process (2.1) it is well known
that for any finite k

:'114
¢

Fo = T

z mlo st or(o, v, (A.32)
y r-

) P = T

g where

. [v]ij = TZ_@ (rrrr+j_i+ rrrrﬂﬂ.) , (A.3b)

e
LS

see [141,[15]. Since (x,} , (4.3b), and ?k , (A.1b), are linear
combinations of [?j}, the convergence in distribution of X, (4.3), to a
Gaussian distribution follows from (A.3). It remains to verify the expression
of the covariance matrix of the limiting distribution, given in (4.4). Note
that formulae analogous to (4.4) have been given, without any proof, in [11].

g Proof of (4.4c)

) Let

=, &
- T - SZ« PeTsik (A.4)

Note from (A.3) that

[’“11]13 s [v]ij = b55 * byaq - (A.5)

AR

Now,

[

R
.-

g
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T - @ @ -K
Ie ro 1 reaZ =
L% LT L T
I Sy, o - 2
([ rZ)( § rpz Py = p%(2) . (A.6)
S=we p=-m
Thus, % is equal to the covariance at lag k of the process
¢l
vit) = Zd—le(t) , (A.7)

A(q™")

and the proof of (4.4¢c) is concluded.

Note that to compute the estimate (4.5) we do not need to consistently
estimate “11 . However, a need for calculating ”11 could arise if we want
to compute the covariance matrix p; , (5.1), or its 1imit as m + » ,
(5.3). To evaluate the entries of wll we cannot proceed by "long division"
as we did for le and NZZ , see {4.4). The reason is that the coefficient

¥y of zk in the infinite division of ¢2(z) cannot be computed without
truncation errors. Instead, we can calculate 9y 38
4 2 2, -1
. gzs C(2)C%(2™") kdz, 1 QZB 2, 1 k dz
e =53 —= 2 = 5= ¢ (2)z , (A.8)
k  2ni Az(z)Az(z 1) z 2ni z

by using an exact algorithm for evaluating complex integrals given in [26].

Proof of (4.4d)

We have that, cf. (A.2) and (A.5)

na na na na
WoJes = 0 7 7 1 a,aa,a, lim NE({F . -
2771 k20 pe0 =0 §20 K P LS N - MA¥NCHI-kep

- . ‘ -~ . - =
rna+nc+1-k-p1(rna+nc+J-9.-s rna+"C+j-1-s)}

n
a s s +
é:O o205t rrpess
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i ¢2na+2nc+i+j-k-p-2-s] (A.9)

Let us denote the two terms in (A.9) by T1 and T2 . According to the
interpretation (A.7) of 7, v can write

na

T, : E£ ) PLLAAN v(t-i-g-s) « v(t-j-k-p)} =
»P»2,5=0

1 -1 (A.10)

= E{A (g~ iv(t-1) A%(q v(t-j)} ,

and
na

T, =E{ | 3,2,3,3 v(t-2na-2nc) v(t+i+j-k-p-g-s)} =
k,p,2,5=0 < P ¢

E{v(t-2na-2nc) . A A (q- )¢ (q'l)e(t+1+j)} =0, fori,jo>1. (A.11)
We thus get

[pplyy = E(A%(@™) vit-DA%a™h) i}, (A.12)

which is the expression given in (4.4d). To complete the proof of (4.4d) we
note that [W,.] . can also be written as

229¢3
2 2, 2, <1, k- dz
[N22] 2 : SZS C™(z) C™ (2™ %)z i
[¢[of .
. g QS[ ] by 2 %20 2 (A.13)
S=2=NC

Proof of (4.4e)

It follows from (A.2), (A.5) and (A.7) that

na na
[lelij = 7 Z 33, 1im NE{(ri'ri)(rna+nc+j-k-p
k=0 p=0 Now
na na

- = r )
rna+nc+j-k-p)} ) 1 k pL¢na+nc+j-i-k-p+¢na+nc+j+1-k-pJ
k=0 p=0

na
= E{ ) akap[V(t-f-k-p)v(t-na-nc-j)
k,p=0
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+ v(t+i-k-p)v(t-na-nc-j)]} =
2, -1 . .
= E{A7(q ")[v(t=i)+v(t+i)]v(t-na-nc-j}} ,

which can also be written as

4 2 2, -1

- A C(z)C (z °) _-(na+nc)p_k=-j ~(k+j)qd

Diplys = 5 gzs Zo z (28 4+ z=lk¥ 122
z )

ne

[ z b Z-S}ZZ-(na+nc)

1 gzs z-nc 3 k-j -(k+j).dz
= 5 20+ 2 =
21"1 AZ(Z'I) [ ]

z
APPENDIX B: PROOF OF LEMMA 5.2

Let

Then

where P; is given by (5.1). Some straightforward calculations give

; .- 5 .-‘ .- : - -~ ~
2l PR gl gt 3;-}|. - R 2R ey,
3rk 93=9 ark ark g=9 ark 8=9

1

Thus, 0 = -R”'G , where

6482 (Ra+ F}'.
L) 8=9

The (j,k) element of G is given by
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(B.2)

(8.3)

(8.4)
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RN =

, n.
G, = {—= I ar H -
Jk ar, 120 i"nc+j-it 0=8
na
iﬁo 4% ncHj-il,k ~ ncri+k Pncejok k#0,
= (805)

na
1§0 3 Sneej-1,0 ~ Zncej ? k=0,

for j=1,...,na, k = 0,...,na+nc.

In (B.5) we have set a, =0 for k > na and k < 0, and =1 .

K 3

Next we evaluate the matrix products Gw12 and GW GT which appear in

(B.2). The (i,j) element of GW

11

1 1s given by, cf. (4.4e),

natnc 5 :
(GWy, ] = E{( ] G; A"(q ")[v(t=k) + v(t+k)])v(t-na-nc-j)} ,
etht k=o 1K L ] ) (8.6)
, i=l,...,na , j=l,...,m=ng ,
where cf. (B8.5),
na+nc (ks £0)] na+nc (tok) na+nc
L G, [vlt-k)+v(t+k)] = ) a__ .ovitk) + ¥ a__ . .. vitek) =
ksg K =-na-nc  MCti*k =éna-nc ne+i+k
na na
= ] avlt-stnc+i) + ] a v(tés-nc-i) =
s=0 ° s=0
= A(Q™M)v(tenc+i) + Alq) v(t-nc-i) .
It follows that
TGW ] 5s = E{AA( '1)C2(q'1)e(t+nc+i)v(t-na-nc-j)1 +
M2lyy T ORAA ;
2, -1 -1 V1 <
+E{A"(q ")v(t-nc-i)A(q ")v(t-na-nc-j)} =
_ecalpa-l . -1 :
= E{AT(q ")v(t-i)A(q ")v(t-na-j)} . (B.7)
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The matrix GwlleT could be evaluated by similar calculations. However, it is
more convenient to note that GwllGT is the covariance matrix of Ra + r . In
effect the following equality holds:

Ra + r = Glg-g) - (8.8)
The (i,j) element of GNIIGT is, therefore, given by, cf. (4.4c) and (8.8),
T na . na -
W .-31. ) . .
(6 116 ]13 le N E{ E=0ak Fnc+i-k! { pZo 3 rnc+J-p}
na na
) kzo §=oakap[w11]nc+i-k,nc+j-p'
na na
= 7 7 3.a  E{[v(t-nc-i+k) + v(tenc+i-k)].[v(t-nc-j+p]} . (B.9)
k=0 p=0 <P
Denote the two terms in (B.9) by TI and TII .
na na
T e !l a2 E{v(t-i-p)v(t-j-k)} =
k=0 p=0 < P
= £AGg vt-DAGG™H v(t-3)) (8.10)
na na ' _
T =1 Z LR E{v(t-j)v(t+2nc+i-k-p)} =
k=0 p=0

= E(v(t-5)A%(q " Iv(teznc+i)} = E{wlt-1)eac2(q Ml te2nc+i)} = 0 .

Thus, we have shown that

(65645 = E(AQ T W(E-DA V() Fudel,eeina (8.11)

The expression (5.9), (5.10) of p; now readily follows from (5.1), (B.2),
(B.3), (B.7) and (B.11). The inequality (5.11) is a simple consequence of
(5.2) and (B.2). Finally, the expression of P: in (5.12) follows from (5.3),
(8.2), (B.3), (B.11), the relation T = Gy and some calculations similar to
(8.6) - (B.7).
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APPENDIX C: PROOF OF THEOREM 6.1

Let H denote the following nonsingular (m-nc-1) x (m-nc-1l) matrix

1 ) 1
0 1 $na
H = IR . 1 . ? (c.1)
9 - . T - M=ng
ana"‘ a1 1 ’

Recall that ne =na +nc +1 . For 1 <k<ma=-ng and 1 < j < na we have

y(t-nc-k)
[ana,..., ay, 1,0, .. .,0].E E y(t-j) 7 =
y(t-m)
na . ‘
= E{ izo A i yl{t-nc-k-ily(t-j)} =
na {C.2)
= E{ § a_ y(t-nc-k-na)y(t-j-p)} =
p=0 P

= E{y(t-nc-na-k)C(q'l)e(t-j)} =0 .

It follows that

HR oy = “l (€.3)
0
with R = R, defined by (2.7).
Next we introduce the reciprocal polynomial of A(2)
A"(2) & 2™ = 8y * By T el alz“a-1 s 2 (C.4)
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A Then, Y]
b
]
H — y(t-1) ] "
) . )
: y(t-1) y(tina) =
AR
' 1 = | A"ahyeen |,
) ) £ 1 t
y(t-m+nc+1) A" (q l)y(t-mﬂle)d L2
’ which implies %
) e
)’(t-l) ] ”
L} . %S
K y(t-na) i
‘ HS < a2e(cq ) | 3% 21Ty T
: m-nc-1 = A E{ qQ A (q' ),Y(t-l) : =
) . CE
i * _1
{ A (q y(t-m+ng)
: L -

-1)

. C(q-l)[y(t-l),...,Y(t-na) ; A*(q y(t=1),..., A*(q-l]y(t-m+ne)]}. (C.5)

X Next note that

Y * ::-
8 e{cta A" (a Hy(t-ircta Hy(t-1)) =
. na -1 : -1 . m
; S €[ 1 tnaClaIylE-Ca iy (e0)] - (C.5) -
i 1 1 R
! =E{ ] a_ Clg " )y(t-i-na)Clq™")y(t-j-p)} = &
& - - - q
3 = £[cla Hy(t-i-na)Alg Hicta Dy (-1 =
5 and similarly, ~
L {‘l.
" - * - - -
5 e[cla A (a iyl e-1ca A" (a ay(t-9)) =
., N
‘ L )
b
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na na -1 -1
E{ Lo %’0 3na-k2na-pCla Iy (t=1-k1Cla™ Iy(t-j-p)} = (c.7

na na

- e -1 -1
E a.a, Clqg " )y(t=-i-2)Cl(q ")y(t-j- =
[sgo %=o s3, Claly q y(t-j-s)}

e{ala™hctq hy(e-11aa hhcta iy ey

By comparing with the definitions of 011, 012 and “22 (see (5.10) and (4.4d))
we get

Q Q
T 11 12

HS H (C.8)
m-nc-1 T
Q2 ¥y
It follows from (C.5) and (C.3) and (5.9) that
5 - T T Ty-1 -1
Po-nc-1 = {Rpenc-1H (H Spenc-1 ) H Rn-nc-1!
-1
. 9y 9 R -1
= [R . 0] T y =
0 ¥y 0
-1 - -
" ROy - Qg My R = Ry
which concludes the proof.
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APPENDIX D: A PARAMETRIZATION OF THE SPECTRAL DENSITY
FUNCTION OF AN ARMA PROCESS

From the Yule-Walker equations, (2.4) it follows that ( a_ =z 1)

» na na . »
. -x -J -(k=§) _
0= kzl(jzo 3 rnc+k-j)z j;o 3,2 kzl Frc+k-j 2
na ., ® na ® nc-j
= 2" ajz'J ) rzP =" 7 ajz'J[ frzPo 7P
j=0 p=nc+1-j p j=0 p=1 P p=1 p
(n.1)
In establishing the last equality in (D.1) we tacitly assumed that
nc >na. (D.2)
when (D.2) does not hold, the derivation needs to be modified and the
following expressions become more complicated. Let
p=1 P
Then
~ ~, =1
#(2) = rg * 8(2) + (2 7). (D.4)

From (D.1) it follows that

na nc-j
Azl (2 = Z 3y 2 rol -(p4d)

na nc nc

- -k k k
= ) - = T
sho M iyt T Z p'17k-1"
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taga,
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e

P L RS

e K 1 2
vee + ¥ a_.r 278 = (r )27 # (rata,r, )2+
k=ha+] N@ k-na 1 2711
=-ncC
LI + (rnc + alrnc-l + s 00 + ana ?‘nc_na)z - (D-S)
Defining
min(k-1,na) o1 (0.6)
p, = a.r R =l,...,NC , D.
K j=0 J k-]
we get
nc
E,pkz-k
P s (0.7)
Alz™")

The spectral density ¢(z) is, therefore, completely determined by

8' = [ro. ees Paeh Ags cees 3 1, (D.8)

a
cf. (D.4)-(D.7). The parametrization via (D.8) of an ARMA process was used by
Walker [11]. Cadzow [12] presented the explicit dependence of ¢(z) on (D.8)
as in (D.4), (D.6) and (D.7); see also [13]. Cadzow's derivation of (D.6),
(D.7), however, provides less insight into the problem than the derivation
above. Unfortunately, (D.6) and (D.7) rely on the assumption (D.2). If this

assumption is not valid then 3(z) will have a more complicated expression
than (0.6)-(D.7).

APPENDIX E: AN EXTENDED MAXIMUM LIKELIHOOD ESTIMATION PROBLEM
AND ITS LARGE-SAMPLE SOLUTION

In this appendix we present a generalized version of the ML estimation
problem introduced in section 3. The large-sample solution of the generalized
ML problem can be obtained in a similar manner. The results of this appendix
cover Walker's approach [11]. Even though these results are not used directly
in the paper, we believe that they are useful in deriving new estimators in

e NP
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some specific estimation problems.

Consider a random m-vector X which is asymptotically normally distributed
such that for some X to be specified

/N(X-X) ﬁ-sl—»dr (0, W , (E.1)

where N denotes the length of the sample used to construct X. Let 3 be the
parameter vector to be estimated. Assume that o completely determines the
asymptotic distribution (E.1) of X. In contrast to the treatment in section 3

we now allow X to depend on & . However, we impose some restrictions on this
dependence. Thus, let X be partitioned as

X=[::|l}ne, ng = dimg .

We assume that

X =14 . (E.2a)
where x - ;'has the form

X - x=-Bg +r, (E.2b)

where B is a nonsingular (at least for N + = ) matrix, and where B and r

-~

depend on the data only. Furthermore, we assume that there exists 2z such
that

|z - z]= oIN) , (E.3a)
and W such that
W - Wl = o(1/vN) , (E.3b)

where hoth ; and ﬁ depend only on the data at hand.
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Mote that assumption (E.3b) is fairly weak. The matrix W may be taken
as W(g) with g a consistent estimate of o . Similarly, (E.3a) will be

Py

satisfied by taking z = z(;) provided that
3
|2 20| = o(1vm) (E.3¢)
This can be seen from the following Taylor series expansion
z(9) = z(9) + [%g-z(e)](g-e) + 0(1/N) = z(e) + O(I/N) , (E.4)

where the second equality follows from (E.3c). Satisfying the conditions
(E.2) and (E.3c) in a given application requires careful choice of X (for a
specific example see [11]).

Under the conditions above we derive a simple large-sample approximation
of the M. estimate of ¢ , in the manner of section 3. The asymptotic log-
likelihood function of X is given by (3.2). Paralleling the analysis in
section 3 we obtain an asymptotically valid approximation of the derivative
with respect to o of the log-likelihood function:

7)oM) X0 + (1) =
.-1 -BG‘H‘
= B, 0IW 5 + 0(1/N) . (E.5)

An approximation of order 1/N of the ML estimate (the solution of the equation
aL(e)/a2e = 0) is given by

-1 -B?+r
(8, 0w 3 =0. (E.6)

Using (3.6), we rewrite (E.6) as

Anla
-

which gives
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a _1 ~ A-l -~
9 = B (r'wlzwzz Z) . (E-8)

Concerning the asymptotic accuracy properties of 5 , (E.8), we can prove
resul ts analogous to those of section 3. To save space we shall omit the
details.

APPENDIX F: THE NONSINGULARITY OF w,, and N

22 22 °

In this appendix we analyze a condition which was tacitly assumed to
helg. It was assumed that the inverse (m-ng) x (m-ng) matrices w;; and
wgz exist. Since we let m tend to infinity this assumption should be
analyzed with some care. Indeed, some eigenvalues of these matrices might
tend to zero as m » » and then, even though the matrices are nonsinqular for
any finite m, they may be i11-conditioned for large m. To address these

issues we state the following result.

Lemma F.l1. Consider the mxm matrix sz given by (4.4d). Let
{Aj,j=l,...,m} denote the eigenvalues of W__ and let

22
A;T: = inf(y1 s Aégl = sup{Ay} - (F.1)
J J
Then
(m) (mel) (m) (m+1)
min > *min * *max € ‘max (F.2)
and
4 w4
Smin 2 im x;T; = )\ 1nf|C(e1”)| , (F.3a)
M>w w
4 i 4
Imax 2 lim \m = suplee™ )" . (F.3b)
Meoo w

Proof: The inequalities in (F.2) are direct consequences of the fact that as

m increases, the sequence of Wpp matrices is a sequence of nested non-negative
definite matrices. We will now prove (F.3a). (The proof of (F.3b) is
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similar). Let vy be a real number, and consider the matrix w22 -yl . The
(k,p) element of this matrix is given by
4 x .
%; i IC(ei“)|4e1“(k'p)dm - Y ,p =
-ﬂ
(F.4)
b . . -
-
If y is such that )
Vet oy o, for e (=n, x1 , (F.5)

then it follows from (F.4) that w22' yl is the covariance matrix of a moving-
average process with a covariance generating function equal to the left-hand-

side of (F.5). Thus
W,, > yI , for a1l m . (F.6)

If (F.5) does not hold, (F.6) cannot he true. Now, Smin is uniquely defined
by the following two conditions.

w22 > Tnin 1, for all m . (F.7a)

and

sz > (°m1n +e)tl, ¢ > 0, cannot hold for all m . (F.7b)

From the above discussion it readily follows that Smin is given by (F.3b).

Since we assumed that C(z) has no zeros on the unit circle (A1) we
conclude from the lemma above that Imin > 0 . Thus, WE% exists for any

value of m (finite or infinite). However, note that if the polynomial C(z)

has zeros close to the unit circle then some numerical problems may be

expected. Indeed in such a case will be small and then W, will be

min 22

il1-conditioned for large m, cf. (F.3). Since sz ifs a consistent estimate
of w22 we expect that the discussion above applies to W
that N is sufficiently large.

27 as well, provided
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ey In the small-sample case some additional care may be needed. The matrix

T Woo is obtained from (4.4d) where {bk} are replaced by {Bk} computed from

:‘- {aj} and {ry} via (2.5). When C(z) has zeros close to the unit circle it may

o happen that the estimated symmetric polynomial

-'j\:.

Lo nc .

Y Blz) = § b,k (F.8)

N0 =-n¢

WA

W has zeros on the unit circle. This is, for example, the case whenever B(z) is
L™ -

-r, not factorizable. As is known, the polynomial B(z) will have in this case

complex zeros with odd degree of multiplicity on the unit circle.For

Yy y

? ) Woos (F.3a) becomes

Lo

e S AL Mmoo A s A Jwyp2

bl Imin = VIM Apin(Wop)a(Wpp) = A~ inflB(e”™)] (F.9)

3 Moo w

‘ Thus, if (F.8) has zeros on the unit circle then we get from (F.9) that

f_:li Imin = 0 and, therefore, we expect NZZ to be very ill-conditioned for large
W

gl m. To avoid such cases we may need to determine the zeros of (F.8) and

» perform some correction on those which are on, or too close to, the unit

. circle.
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APPENDIX H

MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF MULTIPLE
SINUSOIDS FROM NOISY MEASUREMENTS
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. P. Stoica, R. Moses, B. Friedlander and T. Soderstrom
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R ABSTRACT
"J’
3

x
i)

The problem of estimating the frequencies, phases, and amplitudes of
; sinusoidal signals is considered. A simplified maximum-1ikelihood Gauss-

k.

K> i; Newton algorithm which provides asymptotically efficient estimates of these
e

?3 parameters is proposed. Initial estimates for this algorithm are obtained by
Rt - a variation of the overdetermined Yule-Walker method. Some numerical exampies
- lﬂ are presented to illustrate the performance of the proposed estimation

I procedure.
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1. INTRODUCTION

The problem of estimating the parameters of sinusoidal signals from noisy
data has received considerable attention recently [1]. The sinusoid
parameters can be estimated using correlation based techniques. These include
Prony's method, Pisarenko's harmonic decomposition procedure, and the Yule-
Walker method in one of its many versions.

Prony's Method (see [2] for a recent survey) is known to give
inconsistent estimates. It cannot be used in cases with a low signal-to-noise
ratio since the resulting estimates may be highly biased. In Pisarenko's
procedure [2] this problem is eliminated. This method gives consistent
estimates, but in some cases it has poor accuracy.

The basic Yule-Walker method [1],[2] does not eliminate this deficiency
of Pisarenko's method. It gives consistent estimates, but its accuracy may be
poor. Since the Yule-Walker method is attractive from the computational
standpoint, much effort has been spent in recent years to improve its accuracy
properties.

The overdetermined or high-order Yule-Walker method is a modification of
the basic Yule-Walker procedure, which was reported to lead to a considerable
increase in resolution [3],[41,[5],[6]. This method was proposed
heuristically, and the properties of the corresponding estimates were analyzed
by Monte-Carlo simulations only. The reasons for the increase of the
parameter estimation accuracy when the number of Yule-Walker equations and the
model order are increased, were not too well understood. In [11] and [12] we
have tried to fi11 this gap. Very briefly, the conclusions of [11],[12] are
that the asymptotic accuracy of the Yule-Walker estimates will increase with
the number of Yule-Walker equations used and with the model order, although
not necessarily monotonically. However, even when the number of Yule-Walker
equations and the model order are increased without bound, the limiting
accuracy may still be worse than that corresponding to the Cramér—Rao lower
bound (CRLB). Thus, in general, it is possible to improve the accuracy of the
Yule-Walker based estimates.
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In this paper we consider the following procedure for estimating the
parameters of sinusoids in noise. We use the overdetermined Yule-Walker (OYW)
method to get initial estimates of the sinusoid parameters. These are then
used as starting point in a Gauss-Newton algorithm for maximizing the
1ikelihood function (under the assumption that the measurement noise is
Gaussfan). Since the OYW method provides good initial estimates, the Gauss-
Newton algorithm needs relatively few iterations to converge. Also, the
problem of convergence to 1ocal maxima is not likely to occur. Furthermore,
we show a way to considerably simplify the Gauss-Mewton algorithm. The
simplified algorithm is also more stable from the numerical point of view.
Yet it has the same convergence point and, at least asymptotically, the same
convergence rate as the original Gauss-Newton algorithm. We show by means of
a number of Monte-Carlo simulations that the (simplified) maximum-1ikelihood
(ML) Gauss-Mewton algorithm has better resolution than the OYW method.
Comparisons with the asymptotic CRLB are also included.

Some studies related to the present paper were reported in (7] and [8].
In [7] an approximate ML method is discussed. A relatively simple numerical
algorithm is obtained, at the cost of sacrificing some accuracy. The method
proposed here is of comparable complexity, but has better asymptotic
accuracy. Reference [8] presents a performance comparison of several
estimation techniques based on linear prediction and on Singular Value
Decomposition.

The outline of the paper is as follows. In section 2 we state the
problem considered here. Section 3 contains a brief review of the
overdetermined Yule-Walker method for estimating the sinusoid parameters.

This method is used to provide initial estimates for the proposed maximum
1ikelihood method, which is described in section 4. The asymptotic properties
and some computational aspects of both methods (OYW and ML), are briefly
discussed. The problem of local minima of the cost function being minimized
in the proposed method, is discussed in section 5. MNumerical examples
illustrating the performance of the proposed technique are presented in
section 6.
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" 2. STATEMENT OF THE PROBLEM
! a
. . L
Consider the following sinusoidal signal
. “m
‘\’ m -vj
W x{t) = z ay S‘in(mit + ¢) , t=1,2,... , (2.1a) T
H i=1 1
where 3
Qi, p'i e R ’ cu.i [ (0, TI’) ’ and wy # wj for i #j . (chb) a
The assumption w; # 0 means that a possible non-zero constant level of x(t) il
has been removed. The condition wy < ¢ is a consequence of Shannon's It
sampling theorem. 3
k
b
Let y(t) denote the noise-corrupted measurements of x(t)
>
,f_f
y(t) = x(t) + ¢(¢t) , (2.2) o
where (e(t)} is a sequence of independent and identically distributed é&
Gaussian random variables with zero mean and variance xz . We assume that -
x(t) and e(s) are independent for any t and s. %:
The assumption that e(t) is Gaussian may appear somewhat restrictive. B
Under the Gaussian hypothesis it is easy to write the 1ikelihood function of -
the data and to obtain an explicit expression for the CRLB. If in some B
application the Gaussian hypothesis fails to be true, the algorithm of this o
paper is still applicable, but it will no longer provide the ML estimates. -
Nevertheless, the estimates obtained by using the algorithm will still give fi;
the minimum variance in a fairly large class of estimators whose covariance
matrices depend only on the second order statistics of the data. This is ﬁ%
explained further in section 4. o
Next we denote by r_ the covariance of y(t) at lag n (n=0, 1,2,...) "
re = Eiy(t) y(t-n)} . (2.3) .:
:‘u(
<
4
=~

A e R R e L e S S
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The operator E{.} denotes statistical expectation. The sample covariances

N corresponding to (2.3) shall be denoted by Fn . We will use the following
. definition of r_

N-n
s .1 = ]
¥ o T e 4, V(8 v(Em) L n = 012,
‘ (2.4)
" r = pr .
! i
R where N denotes the length of the data sample.

Collecting the amplitudes {ai} , Pphases {05} and frequencies {wg} in a
gﬁ single parameter vector, we define

‘i 8 = [Ql,...,um, ¢I,...,¢m, ml,...,wm]T . (2.5)
& T

) The problem considered in this paper is the estimation of ¢ from N samples of
N noisy measurements ({y(1l),...,y(N)} .

i
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1inear system of equations.

‘e » 3. THE INITIAL OVERDETERMINED YULE-WALKER ESTIMATES

" [2*4

'" As is well known x(t), (2.1), obeys a homogeneous difference equation of '4
Y order 2m,

M :
3 x(t) + a;x(t-1) #+ ... +ax(t-n) =0, né2m , (3.1)

& 1 n |
ir ,HJ
5 where ({a;}e R are such that the polynomial

: :;
W n L%
g AMz) =1 +az+...+a2, (3.2a) .

" g

:’;: has all its zeros located on the unit circle at e*'%, i.e., {4
N +3 b
i Ale=19%) =0 , k=1, ooy m (3.2b) @
1A

S See [21,[41,05]1,[13]. Since we have o
“\: :‘95
. 2

3 n = E{x(t) x(t+n}} + a ‘Sn,O , (3.3a) a
+4 where §. . is the Dirac delta ,
<. 1!-] '}:\
& >
E 1 =)

o 8 5 =j , (3.3b) -
. ’ l 0 12§ =
\

.: it follows from (3.1) that the coefficients {a;} obey the so-called .
) v
;.' (modified) Yule-Walker equations e
4

W n

< It T kol (=D, (3.4) 8
-». A commonly used technique for estimating the frequencies {w;} is based on .‘::'_
89 »~ t .
tﬁ (3.4). Consistent estimates {a;} can be abtained by solving the following &
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Y‘n . . Tl . l"n+1

~ - al -

L S L LUy I L>2n , (3.5)
?‘L_l . e s e rL-nJ aﬂ ?‘L J

where {;i} are the sample covariances. The matrix appearing in (3.5) has
full rank, at least for large N, [14]. Note that for L > 2n the system (3.5)
is overdetermined and needs to be solved in a Teast-squares sense.

Intuitively we can expect that the larger L, the more accurate will be the
estimates {Si) , since the covariances for large lags contain "useful
information" about the covariance structure of the data. While it is not
always true that increasing L increases estimation accuracy [12], it was shown
by simulations [3],[6], that increasing L is often useful. A theoretical
explanation of this empirically noticed fact was recently presented in [12].
It was shown there that while the asymptotic (for N +» = ) accuracy of [51} .
does not increase monotonically with L, it improves considerably in the limit
as L »= . For L <= the estimation errors (Si-ai) are of order

1//N , and for L + = they are of order 1/L/N . The estimation technique

based on (3.5) with L > 2n is the so-called overdetermined Yule-Walker (OYW)
method [3]-(6].

The frequencies {mi} can now be estimated by determining the roots of

Alz) = 1+51z + otz =0 (3.6)
Note that determining the estimates {mi} from {(3.6) implies, in general, some
approximations since A(z) is not guaranteed to have all of its zeros on the

unit circle. (For example, one may look at the peaks of 1/|A(e3“‘)l2 , or at
the angles of the roots of A(z)).

The problem of determining estimates of {ai} and {¢1} once estimates

{m } af the frequencies are given, can be reduced to a least-squares fit.
Rewrite (2.1), (2.2) as

4T e moMME: AN A A S W_A_T




y(t) =

we~13

(;k sin mkt + bk cos mkt) + e(t) , (3.7a)

k=1

where

B, = oy COS ¢ » b = a sing, . (3.7b)
Replacing {wy} in (3.7) by their estimates (;i} , the problem of estimating
sk'bk} can be formulated as the following minimization problem:

M

m
: - - 2
min 7 {y(t) = 7 (8,sin w t + b cos ut)} , M<N . (3.8)
(80} oL ki K Rk )

The solution to this problem is given by

1
s |3 p M T,-1,1 M
g 2 Lmt o= (g T V(RN ) T (g T Vitly(td} (3.9a)
- t=1 t=1
"1
b
m
wher‘eL -
v(t) & [sinalt,..., sin;mt, cos&lt. cees COSm;t] T (3.90)

The reason for not using all of the N data points in (3.8), (3.9) will be
explained later. It will be shown that if M in (3.8) is too large (e.g. M=N)
then the estimation accuracy may deteriorate considerably. Note that for

M <N we also get a smaller computational burden.

Using {;i} and {61} in (3.7b) we readily obtain estimates of {a;} and
(’i} as gfven by

-~

05 * arctg{sj/éj} (mod 27),
J=1,...,m. (3.10)

"
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Next we discuss some implementation issues related to (3.9). Straightforward
programming of (3.9) would lead to a large computational burden. The main
reason is that calculation of trigonometric functions on a computer is time-

consuming. Note, however, that the solution ci(t) of the following second-
order difference equation

ci(t) - (ZCOSwi) ci(t-l) + ci(toZ) =0, t=3,4,...

with initial conditons

ci(l) = Cos u, , ci(z) = ¢cos 2 ws (3.11b)

is given by
ci(t) = Cos w,t, t=1,2,... (3.11¢)

A different set of initial conditions (ci(l) = sinmi, ci(Z) = sinzui) will
produce ci(t) = sin wt Thus, the sequences

{sinmit, Cosu, t; t=1,...,M; i=1,..,m} can be generated using (3.11) at a cost
of approximately 2mM multiplications, and the vector cV(t)y(t) in (3.9) wil
require a total of 4mM multiplications.

Next we present an efficient way for computing the matrix zv(t)V(t)T in
(3.9). It follows from Lemma A.l in the Apnendix that

M M

1 . 1 - .. +
M-tgl sin gt sin ugt 7“'{.1[c°s wist - €S wyst]
M (M1)u (M1)w .
AL wij]cos[ i 1J] sin[-—zl]cos[-—-z-Ll]
* o - T b, (3.12)
P B
s1n[ ] s1n[-1r-]
where
- + - +
“ij = wi-mj N mij = wy “j .

L oxL wl =




y >
A )
K- . . , L
; Similar expressions can be derived for the other elements of the matrix in h
B (3.9). For large M we can further simplify the computations by using some o
approximations. From Lemma A.1 it follows that "
o
5 2!
' 1 M T, 1 1 2
" }églv(t)v(t) =z IZm + O(MJ (3.13)
e ¥
L )
)
§
;; In (3.13) we tacitly assumed that “’i # “‘j for. i # 3 . If this is not the 5o
3_: case, we can work with u),' and mJ slightly corrected as N
;i’;i-e,;j’;j".e’ (3.14) g
:. for some ¢ of order 1/L/N . We conclude from (3.13) that for large M the 523
'(' following simple estimate a
- 2 M
< YR Tov(t)y(t), (3.15)
\ =1 )
is an approximation of order 1/M of J, , (3.9). Note, however, that the ;,.,
d
| smaller 1nf|u - mjl the larger the value of M needed for the approximation
b i2] %
./ in (3.13) to be valid (see the discussion in the appendix and also equation ﬂ:
"'l (3 12)). If M is not large enough then ; may not be a good approximation of
-5
rp . Furthermore, the calculation of :p may be problematic in such a case ﬂ
h since the matrix in (3.9) will be ill-conditioned. '
7
= o
-» We conclude this section with a discussion of the asymptotic properties £
3 of the estimates introduced above. The frequency estimaces {wy} obtained by ¥
-, the OYW method ape consistent, [15]. The asymptotic (as N,L » =) standard N
K deviations of {wi-wy} are of order 1/L/N , provided that L increases not '
o faster than NY , with y < 1/2 [12]. The condition y < 1/2 is sufficient :}:
2 3
but probably not necessary. A necessary and sufficient condition on y is not "
R4 known. Since the CRLB on the standard deviation of ({w;} is 0(1/N3/2) as is N
zi shown in the appendix, it seems possible to improve significantly the accuracy *
; of the OYW estimates. o
¥ _\"!
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An analysis of the asymptotic behavior of {c;,i, ;J.} , (3.9), (3.10), does
not seem to be available in literature. Due to the use in (3.9) of
{.E,i} instead of {wi} such an analysis is not so easy. Since {&1} and
{¢J.} are used as initial estimates, their accuracy is not too important, and
will not be discussed in detail. What is, however, quite important is the

B

»
£

3 choice of M in (3.9). To simplify notation, we will consider the case of a
single sinusoid (m=1). It should be emphasized, however, that the same
E conclusions apply also for m > 1.

For m1 and large M we have from (3.9), (3.13),

e

) rg sinat i) . et + ok
p=yp = . y(t)-{sinut cosut]y} + =
T L t=1 | cosut [ ] w

2 l; l:simt:] () 2 !g ‘ tcosut ()
= € t + € t -
W g1 Leosat Mot || -tsinet

;= 22 b

sinut ] -
Cosut [tcoswt -tsinutly ( (w-w) +

n M ‘ -tz sin ut tcosut
5 + P}TE .2 elt) -2 [tcoswt -tsinatly +
t=1 Y| -t~ cos wt -tsingt
2 §
Sinmt—I
- + _I[tzsimt, tzcosc..t]”(m-m)z +.0 ok 00M (3.16) !
- coswt
1}
\
* where y = (g, b]T i{s the vector of the true parameters. It is not difficult :
_ to see that the first term in (3.16) is 0(1//M) . Since a-u = O(IL/N) ;
::: see the discussion above, it can be shown that the second temm is O(M/L/_N) , ;
4
!

the third is O(Mz/(L/_N)Z) , etc. Thus if M increases faster than L/ N (for
example, if we set L = N1/27¢ £4r some § > 0, and M=N), then difficulties

TR

N 11

: '
’
»
N
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may occur. Indeed, in such a case the estimate ; may not be consistent. The
condition M << L /N must be imposed. Then the first and second terms in
(3.16) are asymptotically the dominant ones. Note that the magnitude of the
first term decreases with M while that of the second increases with M. To get
good asymptotic properties for & (i.e., small estimation error &-w Y, M
should be chosen such that these two terms have the same magnitude. Thus the
“optimal" rate of increase of M is given by

M= (Lm2/3 (3.17)

The estimation error (@-w) corresponding to this choice of M, is of the order
/m.
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4. A MAXIMUM LIKELIHOOD ALGORITHM

The ML estimate of o is obtained as the minimum point of the following
loss function {(see [7],[8] and also the appendix)

N
LF = 7  ¢7(t,0), (4.1a)
where

e(t,9) = y(t) - ay sin(uit + ’1) , (4.1b)

He~13

i=1

We use the Gauss-Newton algorithm to minimize (4.1). Let Sk denote the

parameter estimate at iteration k. The updated estimate 5k+1 is computed by

N N .
“k+l _ 2k ke T, “Kyo=1 k
8 =9 - [tzl ey(t0 )ee(t,e )] [tzl e (t,0 )s( 8" )] (4.2a)
where
cglts0) & 25180) (4.2b)

and where we set
9 & the OYW estimate. (4.2¢)

The elements of the gradient vector ee(t,e) are given by

5 elt,e) _
- day 51n(wit ¥ 4’1)
= 2%%3;21 = -a; coslust + 4,) i=l,...,m . (4.3)
= P
ﬁ.(}i) z -t cos{w.t + )
> awi % Wy ¢‘I
W4
The matrix to be inverted in (4.2) contains entries of very different
ﬁ: magnitudes. The elements of its left-top mxm block are of order N, while
‘ those of the right-bottom mxm block are of the order N Thus, it is
R desirable from the numerical standpoint to "balance" the elements of the
-
) 13 ::
- g
. ;
e e A N . g e -
et Lol R R S N s (NN L At L o Tt
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X matrix. This will also be convenient for some subsequent theoretical j§
E considerations.
. L]
. Let us introduce the notation
\ 1/2 M
% N I2m 0 e
¢ K, = (4.4)
N 3/2 =
0 N Im N
w1
where Iy denotes the K x K identity matrix. The following recursion is ﬁﬁ
equivalent to, but numerically more reliable than, (4.2a) $
N R
~k+l L, 2k 1,2k -1 ~k ~k £
KNG = KNB - HN (6 )[KN Z Ee(tae )E(t,a )] ] (4-53) e
-
where ES
ie) = KT e (tie)el(t,0) kG (4.5b) %
N N [t=1 Ee b} Ee : ] ] N . 3 ﬁ
N K )
Evaluation of the vector | ee(t,a le(t,3) is straightforward, Its elements |
t=1
contain trigonometric functions which could be computed efficiently by the
technique discussed in the previous section. Evaluation of the matrix
HN(ék) can be done similarly but it appears quite costly. To overcome this g:
difficulty we propose an approximate version of the iterative algorithm A
(4.2a). o
A1
As is shown in the Appendix,
2
Hyl(8) = Glo) + O(I/N) , (4.6)
{,
where w
—
14 3
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Z. 0T, o
Q2 . .
G(9) = 2 ] 1 .c. 4 ] 1 . 6 (4.7)
o ! ¢ = 0 -
] % ] Qm
i I A = = = == - - = =
l.6 ] 12 0
A S R
' -z 0 s
] %I O.N_J
- (] )

Replacing H'h(ék) in (4.5) by its large sample approximation G(ék) we get,

~k

N
+l1 _ o K Kyry-l
Kye = Kye =y GleT)H[Ky™ }

e (£,6%(t,65))] (.8)
=1 °

where {uk} is a sequence of positive scalars which can be used for
controlling the step size (“k can be determined, for example, by using‘a line
search algorithm.). The algorithm (4.8) is much simpler than (4.2a). The two
algorithms have clearly the same convergence point. Furthermore, for large N
they will also have similar convergence rates.

We conclude this section by a discussion of the asymptotic accuracy cf
the limiting (as k + = ) estimate obtained by (4.8). Let this estimate be
denoted by 8 .

8 = lim 8%. (4.9)
K+
Since we initialize the recursion (4.8) with a consistent estimate, it is
expected to converge in a few iterations. In fact, parallelling the
calculations in the proof of Theorem 4.1 below it is possible to show that
(4.8) will asymptotically (as N » =) converge in one iteration provided that
L in (3.5) tends to infinity faster than /N .

Under the Gaussian hypothesis, 8 is the ML estimate. We expect,
therefore, that its asymptotic covariance matrix equals the CRLB

PgR = 1%G6(3) , see the appendix for the derivation of P®

R ° However, this
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does not follow immediately since some of the standard assumptions of ML

theory [10] fail to hold in our case (e.qg. ee(t.e) is a nonstationary §;
process). oo
_ =

If we relax the Gaussian hypothesis, then g is the prediction error (PE)
estimate, [16]. Again, the standard PE theory does not apply to our &3
problem. If it were applicable it would follow from [16] that the asymptotic o
covariance matrix of @ is still given by PgR . -

The asymptotic covariance matrix of the normalized estimation errors
KN(é-e) is derived next. We show that this matrix equals PgR , for any
distribution function of the data.

Theorem 4.1. Consider the process y(t) generated by (2.1),(2.2) under the ¢
assumptions stated except that c(t) is allowed to be non-Gaussian. Let g be N
the estimate given by (4.9). Then )
T, 1 - pd e
lim EfKy (8-0)(5-8) 'k ] = P2, (4.10)
L o4

2 Y
where Ky is defined in (4.4) and PCR Gle) . %ﬁ
Proof: 3
Iroor Ld
kY
Note that, -
-1 N - . ~

Ky 1. € (t,9)e(t,8) =0 . (4.11)

L, 79
t=1 b
Thus, for large N we can write K
|
-
a N .

0 = Ky tzl ey(t,0le(t) + Flo) Ky(o-0) + o
S

3m (4.12)

1 - aF(9) "
+ oy 7 (8;-8.) Ky(8-8) + « «

T4 Ui 38 N ;
=
o
—t
16 N
v
o
¥
i
L ]

o DR T s T



5

7y
>

<«

>,

=

*r te %y
B

K"

L 3 ‘l
“lats,

T - Ty Alachda nib ok, - Lo alh —<alk Ral Jal oabh tall Yah Eal Sal Ral ol Sl ek Shlh Sl Bl Bak Sak Ralh Eal _Jhi Bl Ba it S A

where 8, is the i-th component of g and

1 N T -1
I {eglt,0) e, (t,0)+e (t,0)e(t,0) Ky . (4.13)

Fla)= K
N 421

The first term in (4.12) is asymptotically independent of N. To see this note
that its asymptotic covariance matrix, say P, is given by (see (4.5b) and
(4.6))

N N
P2 Tim E(KSI[ § zehsk(sﬂdﬁdﬂ] 1 -
Noo t=] s=1
32 1 U Y e (tade (0 K = A% )] (4.14)
Nom NL L gt Te97eg Ea0 Ry cR'
where PgR is defined in the Appendix. The last equality in (4.14) is also

proven in the Apﬁendix.
Next we show that for large N

N -
Kﬁl[ ! eee(t.e)e(t)]xgl= 0(1//N). (4.15)

The matrix aee(-,-) of second-order derivatives is given by

i
0 .-diag[coslw t+¢i)] ! -diag[tcos(m t+¢i)]

-diag[tcos(m1t+¢i)] .diag(t3151n(m1t+¢1)]. diag[t aisin(m1t+¢i)] ,

(4.16)

where each block of the matrix has size mxm. The generic element of the
matrix in (4.15) can therefore be written as

N
v, & 8 t8 sin(ut+elel(t) , (4.17)
N B tzl ?

where g = (0,1 or 2} , o={ta; Or $1} , w =wy , ANd ¢ = [g, OF 4+ 7} .

The variance of VN is readily evaluated:
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2 a v $BeB :
E{V ]} = E tsPsin(wt + ¢)sin(us + ¢le(tlels)}=
b= e FLL }
22 N
'%Eé?_ z tzasinz(wt +4) .
Thus,

which proves (4.15).

It follows from the calculations above and from the Appendix that

Fle) = x"(Pep)

O(L//R ) -

Next we show that the higher-order terms in (4.12) can be neglected
asymptotically. MNote that

3%%21 is of the same order of magnitude as F(s) , for i=1,...,2m ,
1‘

E%éﬂl is of the order of magnitude of F(g).N , for i=2m+l,...,3m.
i

Since

i=1,..,2m ,

(6,-6,) =
0 e,

f=2m¢l,...,3m ,

and since F(g) is asymptotically independent of N as shown above, we conclude

that the higher-order terms in (4.12) are O0(1//W) . Thus, for large N,

Ky (8-0) = ..[pe o k3! z eyl ts0)e(t)

which implies that, cf (4.14)
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Tim E{K, (e-0)(8-8) Ky} = z Per * * (Pep) ;2'pCR Per -

Now

e W

It follows from the result above that in the case of Gaussian data, the
estimate 5 of ¢ is asymptotically efficient. For non-Gaussian data, g will
asymptotically be the minimum-variance estimate in a fairly large class of
estimators whose covariance matrices depend only on the second-order
statistics of the data.
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5. THE PROBLEM OF LOCAL MINIMA ;
A major concern in any iterative minimization algorithm is the presence o
of local minima in the function to be minimized. Below we analyze the shape T
of the Loss Function (LF). For an arbitrary parameter vector @ we can
express LF(9) as, g
- - -~ .-‘1
LFle) = Ne{LF_(g) + LF (o) + R} (5.1a) :g
where e
. B
LF(8) = & T [x(t) - x(t)] (5.1b)
s N.L [ ] . "
t=1 L3
. n . W
LF (8) =ﬁ§ e(t)[x(t) - x(t)] (5.1c)
1 N2 3\?
R =% ] &°(t) (5.1d)
N ey

and where ;(t) {s defined as in (2.1) but with elements of 5 replacing
elements of 9 there. Comparing (5.1c) and (4.17), we see that LFn(e;) is :
0(1//N) . Also, writing out {(5.1a) and using (3.12) (with M=N), it is easy
to show that

M

N n

L 1 NPTV * 2 d

" L. 3

i=1

-« |

where N
- 1 N - - * 142 gt

Fi(ai ’Uis ¢.i) = 'N‘ Z [aisfn(wit + ¢i) - a151n(w1-t + ¢1-)] .‘;
t=1 Y

Thus, to within O(1/N) LFS((;) is the sum of m decoupled functions F.; te
moreover, all of the F1|S have the same form. Understanding the shape of LFs e
asymptotically reduces to understanding the shape of the function
o

s 1 Y oty -

Fla, w, $) = N U [asinfut + ) - asin(ut+s)] (5.3)

t=1 s
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It is easy to check that F is quadratic in ; and sinusoidal in ; , thus, the
local minima of F with respect to these two var1ab1es are the global minima.
However, F is not so well-behaved as a function of , . A plot of F(u) for

N=40, w=0.4 , ¢ = ¢ =0, and a = a = 1 is shown in Figure 5.1. From this
figure it is apparent that the initial estimate of  must be within the deep

3

!! valley if we expect the Gauss-Newton algorithm to find the global minimum.

e In Appendix B we show that the width of the valley is in the range

o swe[2x/N, 8v/N] . Thus, the initial estimate must have a standard deviation
~ on the order of 2a/N . However, the standard deviation of ; estimates

ib obtained from (3.5) are O(1/L/N) , when L < Nl/2 which asymptotically is too
) large for use with the Gauss-Newton method. Thus, we need to improve the

= initial frequency estimates before starting the minimization.

3 It is known [7] that for N + = the ML estimates of {w;} are given by
¥ the maxima of the periodogram. Thererfore, one method for improving initial
e frequency estimates is to search in some small interval about each ;i » Say
ii [;1 -, ;i+s] for the maximum of the periodogram. Specifically, the

following method can be used.

Choose appropriate values for aw and lmax .

- For each i=1,2,...,m
o
Sy 1) Compute the periodogram %, of the data at frequencies
= . = 0,1
.';: w.u s wi t Aw £ ’ "Hozmax
- using
2 ,1/2
- agy = (Byy * g0 s

where By and biz are computed using (3.15) but with M=N

2) Choose as the new initial frequency estimate the ;1 whose

= corresponding ay, is largest; compute the new initial amplitude and

o el s o
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phase estimates using (3.15).

From the above discussion, ay should be chosen less than 2x/N to ensure that

one of the ; is in the deep trough of LF; in our simulations we used

12
Awe[%ﬁ-, %1 . Moreover, Zmax should be chosen so that

Pr[m1e[;1-zmax-Am. ;1+z «aw] is sufficiently large. In our simulations we

max
chose Znax * 20 ; however, more sophisticated proEedures could be used. For
example, since the OYW method was used to obtain wg lmax could be chosen
based on the asymptotic probability destribution of the o given in [12].
Finally, one must ensure that the search interval for two adjacent frequencies
do not overlap.
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i 6. NUMERICAL EXAMPLES

We present some numerical experiments that indicate the performance of

the proposed algorithm. We first consider the poblem of estimating o from a
signal of the form (2.1), where m=2,

o 2
LA

.
-

s |

01 = 1.0 ml = 0-4 ® ¢1 = -005

az = 100 mz = 0021[ = 1.0

2
In al)l examples L = /N, and M is chosen as in (3.17). The white noise
variance AZ was varied so that the SNR ranges between 0-20 dB in 2.5 dB
increments. (Here, SNR is defined for each signal, i.e., SNR = q§/2x2) .

For each SNR, 50 independent data sets were generated, and average sum-squared

LA

‘.

¥
=

o errors (SSE) of the resulting estimates of KNS were computed. The SSE is
defined as
K
38 é}zllKN(Oi-e)lz

[

where K is the number of independent estimates obtained (50 in these
simulations) and ;1 is the i-th estimate vector.

The SSE of the estimated coefficients for N=500 are shown in Figures 6.1-
6.3. In these (and the remaining) figures, initial estimates are those
obtained using the methods of section 3. Equation (3.15) was used for
estimates in these plots; however, the SSE for estimates obtained using (3.9)
are not significantly different (and in particular, no better on the
average). From these initial estimates, improved estimates were obtained as
outlined in the previous section, then the Gauss<Mewion algorithm (equation

=L

o

..‘..‘_ -
Pt}

= (4.8)) was used. In equation (4.8), u, Was at each iteration set to 1; if LF é
N increased,  was decreased by a factor of 4 until the resulting step was such ﬁ
- that LF decreased. §
.:,:' b

Figures 6.4-6.6 shows the SSE of the initial estimates from the OYW ¥
; method, the improved estimates using the method of Section 5, and the ML E
' estimates. The number of data points, etc. is the same as for figures 6.1- ;
2; 6.3, and only the first parameters aps 91 and y» , are shown. From Figure a
] 6.6 we see that the method of Section 5 significantly improves the initial i
.. frequency estimates, especially for low SNR. Moreover, the iterative ML X
= :
N 23 i

!! 1

w H'
*(n.m. ,.ur) k“ LR \(h{}‘




method provides significant improvement over the modified initial estimates.
Note that although amplitude and phase estimates sometimes become worse after
the initial frequency improvement, they become much better after the iterative
step. As a side note, Figure 6.6 shows that the iterative ML method perform
better than regular FFT-based methods, since the frequency estimates after the
improvement of section 5 are at least as good as FFT-based estimates.

From figures 6.1-6.3 it can be seen that the SSE of the ML estimates are
very close to the Cramer-Rao bound for SNR's above 0 dB. For the SNR of 0 dB,
the high SSE's are caused by convergence to a local minimum of LF in only 2 of
the 50 cases; and in these two cases, the ;1 estimates were in error by less
than 0.006x . Similar performance is evident in Figqures 6.7 and 6.8 for N =
1000 and N = 50 data points, respectively.

From these figures it is apparent that there is a SNR threshold above
which the ML estimator gives variances that agree closely with the CR lower
bounds. Moreover, this threshold decreases with increasing number of data
points. This latter fact is evident from figures 6.3-6.5 where the threshold

is 5 d8 for N = 50 data points, 2.5 dB for N = 500, and O d8 (or lower) for
= 1000.

Figure 6.9 shows results for N = 500 data points when the frequency
difference between wg and Wy varies. Specifically, wy is fixed at 0.4x ,
and wy is varied from 0.2x to 0.4x . The amplitudes and phases are the same
as before, and the SNR is 10 dB. When wy = 0.375¢ , the ML method fails to
yield better average results than the initial guess; however, these poor

averages are caused by failure of the ML method to improve the estimates in
only 5-10 of the 50 cases.

In Figure 6.10 we show average error results for N = 500 data points when
the additive noise is colored. The noise used is MA(1l):

n(t) = fe(t) + 0.9¢(t-1)]//T.BI

Note that n(t) has the same total power as ¢(t) does. It can be seen in
Figure 6.10 that the ML method provides signficant improvement over Yule-
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Walker estimates even for colored noise. In fact, the errors in the colored
noise case are lower than when white noise was used. This is presumably due
to a lower asymptotic CR lower bound for the colored noise case. The Yule-
Walker method does not give consistent estimates in this case, because the
first row of equation (3.5) should not be used (the data can be modeled as a
limiting ARMA(4,5) process, in which case (3.5) holds only for k » 2) .
However, for large L, the effect of the first equation is small, and
"reasonable" estimates could still result (as is seen in Figure 6.7). ‘e note
also that for colored noise, the proposed method is not a maximum 1ikelihood
estimate, but it is still an output error method.

PP ap -

The CPU time .eceded to obtain the ML estimates was about 10 times that of
the time needed to obtain the initial estimates. {(The initial estimates
required .08-.35 seconds and the ML estimates .70-4.0 seconds on a VAX 11-750
as N ranged from 100-1000). About one-half of the CPU time was spent
obtaining improved initial guesses via (5.4), and the other half was spent on
the actual function minimization. The minimization procedure rarely required
more than 3-4 iterations to achieve a tolerance of 10"4 to 10.6 (where no
element of & changed more than "tolerance" in one iteration).

As a final note, the recursive computation of singt or cosyt using
(3.11) required only about 1/6 the CPU time of direct computation. The error
between the recursively and directly computed values remained below 10"3 for
N < 1000 (using single precision arithmetic); a typical plot of the error is

shown in Figure 6.11.
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7. CONCLUSIONS

b 9 4

We derived a (simplified) Gauss-Newton algorithm for estimating the
parameters of sinusoidal signals in noise. The algorithm is based on
maximization of the likelihood function and is initialized by a set of -
preliminary estimates obtained via the overdetermined Yule-Walker method. The

asymptotic properties of the proposed techniques are discussed and it is shown §E
that the parameter estimates are consistent and asymptotically efficient for .
the Gaussian case. In the non-Gaussian case the estimator provides a minimum- %g
variance solution within a large class of estimators based on second order
statistics. 52
The performance of the proposed technique and its capability for Ry
resolving closely-spaced sinusoids were studied by Monte-Carlo simulations. i
It was shown that the Gauss-Newton procedure performs better than the .-
overdetermined Yule-Walker method. :&
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| APPENDIX A ‘

.‘ CRAMER-RAD LOWER BOUNDS
T The estimation problem formulated in section 2 falls into the class of
0 nonlinear regression problems. The CRLB, say PgR , for any unbiased
a estimator of o and xz can be easily derived [7]. In this appendix we will be
interested in the asymptotic CRLB: PER . The reason for this interest is
:; threefold:
™ (i) pER has a much simpler expression than pgR and is, therefore, much
s easier to compute. Yet PER is a good approximation of PER whenever
n\', .
- 2%
o> inf Iw -m-l > (A.1)
- P
Z;; This will become apparent in the following, where it will be shown that the
o smaller the minimum separation in frequency inflmi-mjl , the slower {s the
P convergence of PgR to P"‘R . It is worth noting that a main conclusion of
. the study of P'éR in {71 was that PgR increases rapidly as the minimum
frequency separation goes below the critical value 2x/N . In such a case
:‘:‘ N @™
] PCR is much larger than PCR .
II (i1) PgR can be attained only under certain restrictive conditions [10]
o which apparently are not satisfied for the problem under study. On the other
=N hand, PER is attained in the limit (as N + «» ) by the covariance matrix of ‘
W the ML estimate; see theorem 4.1. Furthermore, for other estimation methods j
» {such as the QYW method) only asymptotic results are availabie. Thus, it is
.g; PER which is of interest in any analytical study comparing the performance
of the ML method with that of other estimation methods.
d (111) The expression of PT, is useful in the derivation of the
A simplified ML Gauss-Newton algorithm in section 4. Note that an expression
v for PE& does not seem to be available in the literature, except for the
. special case of m = 1; see [9] and its references.
<
For the estimation problem under discussion, the log-1ikelihood function
' 27




e B L ila avE Eoao e Lo gk gLl oo e adiad -tk ad el allin aba ot i gb i b Bl nY

m
a:\
.'.

'

xI
93 is given by

M
" 2 N N, 2 1 N > 2‘
- L(a,l ) 2 - z- ]H(ZR) - z- 1" X - ‘—2 Z 4 (t) 9 (A.Z)
K 22° t=1 )
1§ EH
3% i
'.’ where o .
O = - i

A\ elt) = y(t) 121 “151"(“’1t + ¢1.) . (A.3) a
0. N
Iy The CRLB,

[P: -
Lo, -
D -1 cal
, aL(3,1°) . ) “

e .

N . ak(a,x ) T aL(e,xr") 4 ;
-y Per E aL(e,Az) -(( 36 ) N ] ? (A.4)

A 7 A

13& )Y §§

can be evaluated by straightforward calculations:

o r
o3

b L 1 N

N aL _

) Ty Iz Zl e(t)ee(t) Ei

:: oL = - N + 1 ; Ez(t) .

o al 2% 2T el ~§

s. .

; ik T, 1 N T -

— 5[33 ‘(35 1 == ) gglt) eglt) .

" A~ t=l

o

- N L

" al oL N S

Y E . ] = Y e (t)E{e(t)} -

» S AR U

3 EN

3 L NN )

N - e (£)Efe(t)e(s)} = 0 (A.5)

K 20 tzl §=1 o IEL } 2
K 2
2 N N 2
. L 2 _ N 1 2,00 2 N -
) LN LN £ e2(t)efls) - L=
FTCRTU AT g oy
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In (A.5) and (A.6) we used the assumption that c(t) is white Gaussian
noise. It follows that

9,N
. PCR 0
Per . x4 (A.7)
N
where
pLN 2 Tieyt (A.8)
CR A [tzl ee se ] ’ °

and where the derivates of ¢(t) with respect to the parameters
{ags 94> w;} are given by (4.3). The expression (A.8) for P2:N appears, for

i CR

example, in [7]. However, the calculations necessary to show that PgR has

the block-diagonal form of (A.7), which in turn implies that PgéN is given
by (4.8) were not included there.

In the following we will study the limit of PgéN a8S N » = - The
following results will be useful for this study.

Lemma A.l.

FOT W e [0, 2") »

N c0S¢ for w = 0
1
cos(wt + = N+1 (A.9)
ﬂ' tzl w ¢) 1 Sin(g—w—)COS(—z— w*’¢)
Nv m fOY‘ w ® 0
sin(s)

Proof: [17].
Corro]arz.

For welO, 21),
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N-+oo

o exists and has a simple expression.

o
\'::
39," N ‘ FIT cos¢ w=20
o0 Tim L tX coslutry) = k>0 (A.10)
- T L wtrel =) 9 w0, ' ;
Nawo N t=1 l
\f_\ Proof: For k=0 the limit follows immediately from (A.9). For k > 0 the
*" limits follow from relations similar to (A.9) obtained by differentiation of ]
s (A.9) with respect to o .
%5 Let us denote
e 58,N _ 8,N g
Peg = Ky Per Ky o (A.11)
o where KN is given by (4.4). Clearly Fg’N is the CRLB on the covariance 1
Pl R
Sy matrix of the following normalized estimation error vector
“_4'.:
P ﬁ
/ﬁ(; -a) T
e’k ] e e e - -
s A.12 g
e /Nlo=-9) ’ ( )
_;'.-’ - -‘- - -
5 NVR(w=w) i
-
RS where 4 = [°1""’°‘m]T , and o is any unbiased estimator of , .
o b 4; and (:), w are similarly defined. In the following we will show that j
X
e 8 & 1im P3N (A.13) i

a
’-? By making repeated use of Lemma A.l and its corrolary we can write, see
(A.9)
';;-; lim 1 N ae(t) . ac(t) = 1 1im 1 g {COS[(w ~ug )t .= 9 ]
E}Z:‘ Now W a2y 3oy By Tl W t b q
g 1
- - cos[(mimj)t toy tagllr g 84,3
J lim L Toael®) | aelt) LY yml § {sIn[(wstug) t+ 4. + o, i
:::iz N N t=1 30‘1 3¢j L N+ v t=1 P k ] "
' .
i +S1n“m1-mj)t+¢1 '¢j]} =0
p 4
e ]
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v
Yoty ts

N
‘ 1 delt)  aelt) o %% 1
im . im cos{(ws-w; )t +
ﬁ ;Loﬂ't__,l 3¢i aan < &wﬂ'tzl{ [( i )
- -aiaj -
» +9y- ¢j] + CQSL(N1+mj)t +ogt ¢j” = 54 (A.14)
N a N
K 1 selt)  aelt) % 1
Tim . = im T t{sin[(uw;*ws)t + 6.+ o]
i SRS il el 2l ) v O 1" i+ ¢
e e
N Q:a N
.1 3c(t) aelt) 173 44
- Tim . = 1im t{cos[ (wg=ws)t + ¢.= #:]
‘-: N+ F Z 3¢i awj < N+oo rlz- t=1 P f J
- ai“j
~ + c“[(‘"{"u’j)t MR T ¢j]} * =7 %.,3
P
v 1 Y s el L N2
o Now N7 t3] 994 w5 N t=1
G_IQJ
}‘ﬂ._ + Cos[(mi+wj)t + ¢1. + ¢j]} = —6_— Gi,j
.- where & j denotes Dirac's delta (3.3b). Therefore,
G
[ 1 ]
[} ‘ ' ————
L 0
. J O N d e oo moema
N 2 . 2 0 y 2 0
pe =1 o, %1, LT , (A.15)
CR T L2, L 2
= ' 0 “m 0 %m
- ' z , L3
e zee e - 2=
A A R
- 1 . 1 .
o 5 | - 30 <) |6— . 2
' 0 %m, 0 %m
- ' T, 5]
which after some straightforward calculations gives
.
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Lq
we - ' -
' ... LA
\ 14 T 6
Ja'] ! —Z 0 ! 7 0
& PB = 2)‘2 1 01 .. ' 31 ., . (A.16)
) CR 0 . 4 . ._ 6
e ; 0 z , 0 4
D . %m %m
e ] e el 4 e e e e e - b v 0 @« @a @« =« =
o i ]
! 6 112
o o+ "z .0 vz,
i 2 1 al ‘- _z. i al * . 12
) ' 0 ! 0 4
:l t m 1 %
Yllg - -
;'5 Note that the bounds for phases and frequencies are proportional to the
&
129 noise-to-signal ratios corresponding to the frequency in question. However,
: somewhat contrary to intuition the bound for the amplitudes of the sinusoids
is independent of these amplitudes. Note also, the almost diagonal structure
o of P2R . The estimation errors of the phase and freguency of the same
Ek sfnusoid are asymptotically cross-correlated. All the other estimation errors
_:i are asymptotically uncorrelated.
'~.
‘ji It is also interesting to note that the bounds for (;i-mi) are of order
o 1/N3/2  (see also [9] and its references). This order of the CRLB is rather
D
%%3 unusual for a stationary estimation problem for which the corresponding bounds
<, are in general of the order 1/N]'/2 . However, the problem of estimating the
‘_‘ parameters of a sinusoidal signal is not a strictly stationary estimation
‘:; problem: the derivative of e(t) with respect to w; is clearly a
- nonstationary signal.
o
e It follows from Lemma A.l that the smaller the minimum frequency
:ﬁj separation 1nf|m1-mjﬁ the slower is the convergence in (A.13). Consider, for
[~ je
;;lj example, (A.9) for 4 small but non- zero. Then the left-hand-side of (A.9)
P will generally be small provided that Ny , rather than M, is large enough,
-
S see the right-hand-side of (A.9).
ol
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APPENDIX B

Since estimates of ., k2 and o are 0(1//W) or 0(1//N3) , we restrict

attention to the case wZuw,a"a and ¢ = ¢ From (5.3) the derivative
of F with respect to 1s

N - -~ ~ -~ ~ ~
. %- Z t[asin(ut+¢) - asin(wt+s) ][-2acos(wt+y) ] (B.1la)
2w
- - - 22 N - R
= - 327 tsin((thy)tr{o+e)] + 2 tsin(2wt+2e) (B.1b)
n;f [(t+o ] rtzl (2ut+2e
i ts1n[(w-w)t + (¢- ¢)]

We claim that the zeroes of 2F/2; in the region of interest are nearly equal
to those of the third term of (B.lb). To support this, a plot of

N
Y tsinyt
H t=1
for N=100 is shown in Figure B.l1. It can be seen that for y not near zero,
this function is near zero. Also near =0 the zero crossings have large
slopes and are therefore insensitive to small additive disturbances. Defining

® % w - and 6 = s - s » the third term in (B.1b) can be expressed as

-~ N - -
- tzl tsin(ut + )

- N N

= -aafcosy ( ] tsingt) + sinsté J t cos wt}] (B.3)
t=1 t=1

Since G is 0(1//N) , the second term in (B.3) can be neglected. Thus for

w*w,a=aandy :.; , the zeroes of 3F/ay are nearly those of the
function

1 N

]t singt (8.4)
LI
It is not difficult to see that (B.4) is zero for 3 = Q0 . Morever, for (\\\
0<y < g. (B.4) is positive (since each element of the sum is positive). \\\\\
For & = " , (B.4) is negative; thus the first positive zero of (B.4) occurs
for 3 ¢ &ﬂf' ﬁq . Since (B.4) is an even function of J , and since the
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zeroes of (B.4) are approximately equal to the zeroes of 2F/2, , we conclude
that the width of the main valley of F(y) is approximately in the range

(w-ale[2 « §, 2« 1) = (&, 21y .
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Figure 5.1: A plot of F(g) for N=40, 4 =04, =520, anda=gq= 1

l' Figure 6.1: SSE's in dB of amplitude estimates for N = 500 data points

o Figure 6.2: SSE's in dB of phase estimates for N = 500 data points

2 Figure 6.3: SSE's in d8 of frequency estimates for N = 500 data points

l! Figure 6.4: SSE's in dB of amplitude estimates for: the initial OYW method,
- ;:?:;sinitial improvement, and after iteration. N = 500 data

Figure 6.5: SSE's in dB of phase estimates for: the initial OYW method,
after initial improvement, and after iteration. N = 500 data

- points
;ﬁ Figure 6.6: SSE's in dB of frequency estimates for: the initial OYW method,
after initial improvement, and after iteration. N = 500 data
-~ points
- Figure 6.7: SSE's in dB of frequency estimates for N = 1000 data points
X Figure 6.8: SSE's in dB of frequency estimates for N = 50 data points
- Figure 6.9: SSE's in dB of frequency estimates as wy varies
. (ml = 0.4 v) . N =500 data points
Ii Figure 6.10: SSE's in dB of frequency estimates for MA(l) noise example. N =
500 data points
“
ﬁ} Figure 6.11: Error between sin(yt) computed directly and computed by

difference equation for o = 0.44

N
Figure B.1 A plot of 1/N ) t sin(pt) for N = 100.
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ADAPTIVE DETECTION OF TRANSIENT SIGNALS
Boaz Porat Benjamin Friedlander
Dept. of Electrical Engineering Systems Control Technology
Technion, Israel Institute of 1801 Page Mill Road
Technology Palo Alto, CA 94304

Haifa 32000, Israel

ABSTRACT

The paper discusses the problem of detecting transient signals of unknown
waveforms in white Gaussian noise. The signals are modeled as impulse
responses of rational transfer functions with unknown parameters. A
generalized likelihood ratio test (GLRT) is proposed and its statistical
properties are analyzed for both known and unknown noise variances. The GLRT
involves constrained maximum likelihood estimation of the signal parameters.
The performance of the GLRT is compared to that of an optimal matched filter
and an energy detector, for some test cases. Also, the theoretical
distributions of the iikelihood ratios under Hy and Hy are compared to
experimental distributions obtained by Monte-Carlo simulations.
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